Abstract:
An ion implantation is disclosed that includes an ionization chamber having a restricted outlet aperture and configured so that the gas or vapor in the ionization chamber is at a pressure substantially higher than the pressure within an extraction region into which the ions are to be extracted external to the ionization chamber. The vapor is ionized by direct electron impact ionization by an electron source that is in a region adjacent the outlet aperture of the ionization chamber to produce ions from the molecules of the gas or vapor to a density of at least 1010 cm−3 at the aperture while maintaining conditions that limit the transverse kinetic energy of the ions to less than about 0.7 eV. The beam is transported to a target surface and the ions of the transported ion beam are implanted into the target.
Abstract translation:公开了一种离子注入,其包括具有限制的出口孔的电离室,并且被构造成使得离子化室中的气体或蒸汽的压力显着高于离子被提取外部的提取区域内的压力 电离室。 蒸汽通过电子源直接电离而电离,该电子源位于邻近离子化室的出口孔的区域,以产生从气体或蒸汽的分子到至少10×10 6的密度的离子, SUP> cm -3,同时保持将离子的横向动能限制在小于约0.7eV的条件。 将光束输送到目标表面,并将输送的离子束的离子注入靶中。
Abstract:
Techniques for removing molecular fragments from an ion implanter are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for removing molecular fragments from an ion implanter. The apparatus may comprise a supply mechanism configured to couple to an ion source chamber and to supply a feed material to the ion source chamber. The apparatus may also comprise one or more hydrogen-absorbing materials placed in a flow path of the feed material, to prevent at least one portion of hydrogen-containing molecular fragments in the feed material from entering the ion source chamber.
Abstract:
The present invention comprehends a compact and economical apparatus for producing high intensities of a wide variety of wanted positive and negative molecular and atomic ion beams that have been previously impossible to previously produce at useful intensities. In addition, the invention provides a substantial rejection of companion background ions that are frequently simultaneously emitted with the wanted ions. The principle underlying the present invention is resonance ionization-transfer where energy differences between resonant and non-resonant processes are exploited to enhance or attenuate particular charge-changing processes. This new source technique is relevant to the fields of Accelerator Mass Spectroscopy; Molecular Ion Implantation; Generation of Directed Neutral Beams; and Production of Electrons required for Ion Beam Neutralization within magnetic fields. An example having commercial importance is ionization of the decaborane molecule, B10H14 where an almost perfect ionization resonance match occurs between decaborane molecules and arsenic atoms.
Abstract translation:本发明包括一种紧凑且经济的装置,用于产生以前不可能以有用强度预先产生的各种各样的所需正,负分子和原子离子束的强度。 此外,本发明提供了与所需离子频繁同时发射的伴随背景离子的显着排除。 本发明的基本原理是谐振电离转移,其中利用共振和非共振过程之间的能量差异来增强或减弱特定的电荷变化过程。 这种新的源技术与加速器质谱技术相关; 分子离子注入 定向中性梁的生成 和磁场中离子束中和所需的电子的生产。 具有商业重要性的实例是十硼烷分子的电离,其中在十硼烷分子和砷原子之间发生几乎完美的电离谐振匹配的B 10 H 14 N 14。
Abstract:
The present invention relates to a guide tube for an ion beam in an ion implanter located adjacent a semiconductor wafer. Such guide tubes are provided to confine charged particles used for wafer neutralisation during implantation. According to the invention, a guide tube comprises an axis, open ends to receive an ion beam along said axis, a tube wall substantially parallel with said axis, and at least one opening through the tube wall forming a gas conduction passage from inside to outside the guide tube, said passage having a length aligned at an acute angle to said guide tube axis and a minimum dimension transverse to said length such that a line of sight through the passage perpendicular to said guide tube axis is substantially occluded.
Abstract:
A system, method and program product for determining parallelism of an ion beam using a refraction method, are disclosed. One embodiment includes determining a first test position of the ion beam while not exposing the ion beam to an acceleration/deceleration electrical field, determining a second test position of the ion beam while exposing the ion beam to an acceleration/deceleration electrical field, and determining the parallelism of the ion beam based on the first test position and the second test position. The acceleration/deceleration electrical field acts to refract the ion beam between the two positions when the beam is not parallel, hence magnifying any non-parallelism. The amount of refraction, or lateral shift, can be used to determine the amount of non-parallelism of the ion beam. An ion implanter system and adjustments of the ion implanter system based on the parallelism determination are also disclosed.
Abstract:
An ion implanter includes an ion source for generating an ion beam moving along a beam line and a vacuum or implantation chamber wherein a workpiece, such as a silicon wafer is positioned to intersect the ion beam for ion implantation of a surface of the workpiece by the ion beam. A liner has an interior facing surface that bounds at least a portion of the evacuated interior region and that comprises grooves spaced across the surface of the liner to capture contaminants generated within the interior region during operation of the ion implanter.
Abstract:
A contamination mitigation or surface modification system for ion implantation processes includes a gas source, a controller, a valve, and a process chamber. The gas source provides delivery of a gas, be it atmospheric or reactive, to the valve and is controlled by the controller. The valve is located on or about the process chamber and controllably adjusts flow rate and/or composition of the gas to the process chamber. The process chamber holds a target device, such as a target wafer and permits interaction of the gas with an ion beam to mitigate contamination of the target wafer and/or to modify the existing properties of the processing environment or target device to change a physical or chemical state or characteristic thereof. The controller selects and adjusts composition of the gas and flow rate according to contaminants present within the ion beam, or lack thereof, as well total or partial pressure analysis.
Abstract:
An ion source for an ion implantation system includes a vaporizer for producing a process gas; an electron source for generating an electron beam to ionize the process gas within a ionization chamber. The ionization chamber includes an extraction aperture for extracting an ion beam. The ion source, in accordance with the preset invention, is configured to be able to be retrofit into the design space of existing ion sources in, for example, Bernas source-based ion implanters.
Abstract:
An ion implanter having a source, a workpiece support and a transport system for delivering ions from the source to an ion implantation chamber that contains the workpiece support. The implanter includes one or more removable inserts mounted to an interior of either the transport system or the ion implantation chamber for collecting material entering either the transport system or the ion implantation chamber due to collisions between ions and the workpiece within the ion implantation chamber during ion processing of the workpiece. A temperature control coupled to the one or more removable inserts for maintaining the temperature of the insert at a controlled temperature to promote formation of a film on said insert during ion treatment due to collisions between ions and said workpiece.
Abstract:
A device to implant impurities into a semiconductor wafer has a process chamber having a wall, a pressure compensation unit, a disk to support a plurality of semiconductor wafers within the process chamber. The disk has a radially extending slot arranged among the wafers. A beam gun is positioned within the process chamber to shoot an ion beam at the semiconductor wafers. A cryo pump minimizes the pressure within the process chamber. A first ion gauge is positioned between the process chamber and the cryo pump. A second ion gauge extends through the wall of the process chamber. A switching device selectively connects the first or second ion gauge to the pressure compensation unit. A faraday receives ions from the ion gun filter after the ions travel through the slot in the disk. A current meter counts the number of electrons flowing to the disk faraday to neutralize the ions.