Abstract:
Aspects for adjusting resistive memory write driver strength based on write error rate (WER) are disclosed. In one aspect, a write driver strength control circuit is provided to adjust a write current provided to a resistive memory based on a WER of the resistive memory. The write driver strength control circuit includes a tracking circuit configured to determine the WER of the resistive memory based on write operations performed on resistive memory elements. The write driver strength control circuit includes a write current calculator circuit configured to compare the WER to a target WER that represents the desired yield performance level of the resistive memory. A write current adjust circuit in the write driver strength control circuit is configured to adjust the write current based on this comparison. The write driver strength control circuit adjusts the write current to perform write operations while reducing write errors associated with breakdown voltage.
Abstract:
Magnetic random access memory (MRAM) bit cells employing source lines and/or bit lines disposed in multiple, stacked metal layers to reduce MRAM bit cell resistance are disclosed. Related methods and systems are also disclosed. In aspects disclosed herein, MRAM bit cells are provided in a memory array. The MRAM bit cells are fabricated in an integrated circuit (IC) with source lines and/or bit lines formed by multiple, stacked metal layers disposed above a semiconductor layer to reduce the resistance of the source lines. In this manner, if node size in the IC is scaled down, the resistance of the source lines and/or the bit lines can be maintained or reduced to avoid an increase in drive voltage that generates a write current for write operations for the MRAM bit cells.
Abstract:
A read circuit for a memory cell may include an integrated logic circuit for sensing a current change. The integrated logic sensing circuit may be an offset cancelling single ended integrated logic sensing circuit. The circuit may include an offset canceling single ended sensing circuit coupled to a supply voltage, an offset canceling single ended sense amplifier circuit having a sense amplifier input coupled to the offset canceling single ended sensing circuit and a sense amplifier output, and a cell array coupled to a sensing circuit output and a ground.
Abstract:
A magnetic tunnel junction (MTJ) device includes a free layer. The MTJ also includes a barrier layer coupled to the free layer. The MTJ also has a fixed layer, coupled to the barrier layer. The fixed layer includes a first synthetic antiferromagnetic (SAF) multilayer having a first perpendicular magnetic anisotropy (PMA) and a first damping constant. The fixed layer also includes a second SAF multilayer having a second perpendicular magnetic anisotropy (PMA) and a second damping constant lower than the first damping constant. The first SAF multilayer is closer to the barrier layer than the second SAF multilayer. The fixed layer also includes a SAF coupling layer between the first and the second SAF multilayers.
Abstract:
An apparatus includes a first magnetic tunnel junction (MTJ) device of a differential MTJ pair. The apparatus further includes a second MTJ device of the differential MTJ pair. The first MTJ device includes a sense layer having a high coercivity portion.
Abstract:
An improved magnetic tunnel junction device and methods for fabricating the improved magnetic tunnel junction device are provided. The provided two-etch process reduces etching damage and ablated material redeposition. In an example, provided is a method for fabricating a magnetic tunnel junction (MTJ). The method includes forming a buffer layer on a substrate, forming a bottom electrode on the substrate, forming a pin layer on the bottom electrode, forming a barrier layer on the pin layer, and forming a free layer on the barrier layer. A first etching includes etching the free layer, without etching the barrier layer, the pin layer, and the bottom electrode. The method also includes forming a top electrode on the free layer, as well as forming a hardmask layer on the top electrode. A second etching includes etching the hardmask layer; the top electrode layer, the barrier layer, the pin layer, and the bottom electrode.
Abstract:
An apparatus includes a perpendicular magnetic anisotropy magnetic tunnel junction (pMTJ) device. The pMTJ device includes a storage layer and a reference layer. The reference layer includes a portion configured to produce a ferrimagnetic effect. The portion includes a first layer, a second layer, and a third layer. The second layer is configured to antiferromagnetically (AF) couple the first layer and the third layer during operation of the pMTJ device.
Abstract:
Partial perpendicular magnetic anisotropy (PPMA) type magnetic random access memory cells are constructed using processes and structural configurations that induce a directed static strain/stress on an MTJ to increase the perpendicular magnetic anisotropy. Consequently, reduced switching current of the MTJ results. The directed static strain/stress on the MTJ is induced in a controlled direction and/or with a controlled magnitude during fabrication. The MTJ is permanently subject to a predetermined directed stress and permanently includes the directed static strain/strain that provides reduced switching current.
Abstract:
A resistance-based memory includes a two-diode access device. In a particular embodiment, a method includes biasing a bit line with a first voltage. The method further includes biasing the sense line with a second voltage. Biasing the bit line and biasing the sense line generates a current through a resistance-based memory element and through one of a first diode and a second diode. A cathode of the first diode is coupled to the bit line and an anode of the second diode is coupled to the sense line.
Abstract:
A magnetic tunnel junction (MTJ) with direct contact is manufactured having lower resistances, improved yield, and simpler fabrication. The lower resistances improve both read and write processes in the MTJ. The MTJ layers are deposited on a bottom electrode aligned with the bottom metal. An etch stop layer may be deposited adjacent to the bottom metal to prevent overetch of an insulator surrounding the bottom metal. The bottom electrode is planarized before deposition of the MTJ layers to provide a substantially flat surface. Additionally, an underlayer may be deposited on the bottom electrode before the MTJ layers to promote desired characteristics of the MTJ.