Abstract:
A sensor including at least two active areas for receiving light energy and a resistive layer disposed on each of the at least two active areas for providing a pair of current signals corresponding to a position of light energy of a predetermined wavelength striking the active area. The two or more active areas are electrically isolated from each other and operate independent of each other. Preferably, the two or more active areas are electrically isolated with silicon dioxide.
Abstract:
A spectrometer includes an infrared source, a spectrally selective element, and a cell array. The cell array includes walls that define a number of cavities. The spectrometer also includes an infrared spatial detector responsive to infrared radiation travelling from the infrared source through contents of at least two of the cavities as well as through the spectrally selective element.
Abstract:
An infrared detection system for seeing multiple pixel scenes and/or connecting multiple detectors, within each communications path, includes a data processor, optical toggles and/or electrical switches, and a large number of pixels and detectors. For the spatial net, the data processor sends signals to the optical toggle and electric switches connecting neighboring pixels and other detector elements to the data processor. A single communications path serves several pixels and detector elements thereby minimizing interconnection congestion from the pixels to the processing circuitry.
Abstract:
An environmental monitoring apparatus comprises: an infrared transmitting substrate 12 disposed in a prescribed ambient atmosphere 10; an infrared radiation source 20 for irradiating an infrared radiation to the infrared transmitting substrate 12; a contaminant analyzing means 30 for computing a concentration of a contaminant in the ambient atmosphere 10, based on the infrared radiation exited from the infrared transmitting substrate 12 after the infrared radiation has undergone multiple reflections inside the infrared transmitting substrate 12; and a contaminant removing means 50 for removing the contaminant in the ambient atmosphere 10 complied with the concentration of the contaminant in the ambient atmosphere 10, which have been computed by the contaminant analyzing means 30. Thus, the contaminant in the ambient atmosphere can be monitored with high sensitivity and real time, and can be immediately removed when the concentration in the ambient atmosphere exceed a prescribed value.
Abstract:
A single dual mode monolithic focal plane array having an active sensor and a passive sensing capability is switched from one mode to the other by switching the bias across the cells of the array from-a passive IR mode to an-active LADAR mode, with the monolithic dual mode focal plane array having applications in missile target seekers and laser target designators. The switching is accomplished by increasing the gain of the array by as much as 30 times that associated with IR detection when laser return pulses are expected. Thus, there need be no mechanical changes to the array to afford both passive IR sensing and an active LADAR pulse detector. Nor need there be two different focal plane arrays, one for IR and one for laser radiation, which leads to boresighted alignment problems.
Abstract:
Described are methods and systems for providing improved defect detection and analysis using infrared thermography. Test vectors heat features of a device under test to produce thermal characteristics useful in identifying defects. The test vectors are timed to enhance the thermal contrast between defects and the surrounding features, enabling IR imaging equipment to acquire improved thermographic images. In some embodiments, a combination of AC and DC test vectors maximize power transfer to expedite heating, and therefore testing. Mathematical transformations applied to the improved images further enhance defect detection and analysis. Some defects produce image artifacts, or nulldefect artifacts,null that obscure the defects, rendering difficult the task of defect location. Some embodiments employ defect-location algorithms that analyze defect artifacts to precisely locate corresponding defects.
Abstract:
The invention relates to a sensor array for image recognition, comprising several optical sensor elements (R, G, B) of a first type that are disposed in the shape of a grid and react to light in the visible wavelength range, wherein additional sensor elements (IR) of a second type are provided in addition to the sensor elements (R, G, B) of the first type, which react to light in the invisible wavelength range.
Abstract:
A method and apparatus for evaluating a semiconductor wafer. A combination of a photothermal modulated reflectance method and system with a photothermal IR radiometry system and method is utilized to provide information which can be used to determine properties of semiconductor wafers being evaluated. The system and method can provide for utilizing a common probe source and a common intensity modulated energy source. The system and method further provide an infrared detector for monitoring changes in infrared radiation emitted from a sample, and photodetector for monitoring changes in beam reflected from the sample.
Abstract:
The present invention provides methods and apparatus for flexible and reproducible control ofquantum cascade laser frequency scans having short (nanosecond) pulse excitations. In accordance with a preferred embodiment of the invention, a method of digital frequency control for pulsed quantum cascade lasers includes digitally synthesizing a sub-threshold current, converting the sub-threshold current to analog form, and generating laser pulses. Preferably, the sub-threshold current is synchronized to the laser pulses.
Abstract:
An analyte detection system for non-invasively determining the concentration of an analyte in a sample is described. The detection system includes a window assembly consisting of a main layer adapted to allow electromagnetic radiation to pass therethrough, and a heater layer adapted to exchange heat to the sample. The system also includes a detector adapted to detect electromagnetic radiation emitted by the sample and passed through the window assembly. The analyte detection system also includes a control system in electrical communication with the heater layer and adapted to cause the heater layer to exchange heat to the sample. The main layer of the window assembly may be made from a variety of materials such as germanium, silicon, and chemical vapor deposited diamond.