Abstract:
The system and method of projectile flight management using a combination of radio frequency orthogonal interferometry for the long range navigation and guidance of one or more projectiles that does not need to be accurate all the way to the ground based on the use of larger artillery. The system provides for more accurate targeting, especially in GPS-denied and GPS-limited environments.
Abstract:
A compact transducer system includes both an antenna subsystem and an optical transducer subsystem. The antenna subsystem may include multiple radio frequency (RF) radiating elements disposed adjacent to a ground plane. The ground plane may also serve as an optical reflector within an optical path of the optical transducer subsystem. A secondary reflector may also be provided within the optical path of the optical transducer subsystem. The secondary reflector may be formed of dielectric material (e.g., meta-material) in some embodiments to prevent undesired coupling with RF circuitry.
Abstract:
A closed, self-contained ballistic apogee detection module for use in a projectile, such as a rocket, mortar round, or artillery round, fuses data from multiple built-in sensors, such as an accelerometer, a magnetometer, and a gyroscope, and processes the data using a microprocessor through a custom quaternion extended Kalman filter to provide accurate state and orientation information about the projectile so as to accurately predict apogee. The module outputs a signal indicating apogee detection or prediction which they projectile uses to initiate fuze arming, targeting control, airbody transformation, maneuvering, flow effector deployment or activation, payload exposure or deployment, and/or other mission activity. Because the system and method of the invention does not rely on external environmental data to detect apogee, it need not use a pressure sensor and can be completely sealed in and closed without requiring access to air from outside the projectile for barometric readings.
Abstract:
Technology for determining a geographical location is described. A sequence of magnetic field gradient measurements can be identified for specific positions on the Earth that correspond to a path traveled by a moving platform. The sequence of magnetic field gradient measurements for the path can be compared to a reference magnetic field gradient map. A trajectory derived from the reference magnetic field gradient map that correlates to the sequence of magnetic field gradient measurements can be identified. The trajectory can have known geographical coordinates. The geographical location of the moving platform can be determined based on the known geographical coordinates of the trajectory.
Abstract:
A method to spread laser photon energy over separate pixels to improve the likelihood that the total sensing time of all the pixels together includes the laser pulse. The optical signal is spread over a number of pixels, N, on a converter array by means of various optical components. The N pixels are read out sequentially in time with each sub-interval short enough that the integration of background photons competing with the laser pulse is reduced. Likewise, the pixel read times may be staggered such that laser pulse energy will be detected by at least one pixel during the required pulse interval. The arrangement of the N pixels may be by converter array column, row, two dimensional array sub-window, or any combination of sub-windows depending on the optical path of the laser signal and the capability of the ROIC control.
Abstract:
A dual-mode laser-based and image-based seeker for projectiles, missiles, and other ordnance that persecute targets by detecting and tracking energy scattered from targets. The disclosed embodiments use a single digital imager having a single focal plane array (FPA) sensor to sense data in both the image-based and laser-based modes of operation. A control mechanism controls pixel scanning at a sub-window of the FPA to tightly control the imager's shuttering to detect, decode and localize in the imager's field-of-view a known pulse repetition frequency (PRF) from a known designator in the presence of ambient light and other confusing target designators, each having a different PRF.
Abstract:
A system to merge and exploit two uniquely different types of seeker homing modes of functionality into a single, dual-mode seeker, using only an FPA as the active sensor to achieve both modes of operation. The disclosed embodiments also provide a means to actively designate & track, and also passively track the same target between active designation pulses to track a target at an update rate higher than the designator pulse rate with less demanding automatic target tracking algorithms. The disclosed embodiments eliminate the need for automatic target acquisition/recognition algorithms necessary for purely passive target tracking. The passive tracking methodology “aids” the passive tracking algorithm, based on frame-to-frame image registration, with active SAL track information to improve overall seeker guided weapon performance.
Abstract:
A multimode seeker includes a radio-frequency antenna and a controller. The radio-frequency antenna comprises a substrate and an electrically conductive film deposited on the substrate. The substrate is transparent to short wavelength infrared radiation. The electrically conductive film is configured to transmit and receive radio-frequency radiation and is transparent to the short wavelength infrared radiation. The controller is configured to receive and interpret data from the radio-frequency antenna.
Abstract:
A system comprising an unmanned aerial vehicle (UAV) configured to transition from a terminal homing mode to a target search mode, responsive to an uplink signal and/or an autonomous determination of scene change.
Abstract:
A system to merge and exploit two uniquely different types of seeker homing modes of functionality into a single, dual-mode seeker, using only an FPA as the active sensor to achieve both modes of operation. The disclosed embodiments also provide a means to actively designate & track, and also passively track the same target between active designation pulses to track a target at an update rate higher than the designator pulse rate with less demanding automatic target tracking algorithms. The disclosed embodiments eliminate the need for automatic target acquisition/recognition algorithms necessary for purely passive target tracking. The passive tracking methodology “aids” the passive tracking algorithm, based on frame-to-frame image registration, with active SAL track information to improve overall seeker guided weapon performance.