Abstract:
A memory using techniques to extract the data content of its storage elements, when the distribution of stored states is degraded, is presented. If the distribution of stored states has degraded, secondary evaluations of the memory cells are performed using modified read conditions. Based upon the results of these supplemental evaluations, the memory device determines the read conditions at which to best decide the data stored.
Abstract:
Soft errors occur during normal use of a solid-state memory such as EEPROM or Flash EEPROM. A soft error results from the programmed threshold voltage of a memory cell being drifted from its originally intended level. The error is initially not readily detected during normal read until the cumulative drift becomes so severe that it develops into a hard error. Data could be lost if enough of these hard errors swamps available error correction codes in the memory. A memory device and techniques therefor are capable of detecting these drifts and substantially maintaining the threshold voltage of each memory cell to its intended level throughout the use of the memory device, thereby resisting the development of soft errors into hard errors.
Abstract:
Non-volatile memory cells store a level of charge corresponding to the data being stored in a dielectric material storage element that is sandwiched between a control gate and the semiconductor substrate surface over channel regions of the memory cells. More than two memory states are provided by one of more than two levels of charge being stored in a common region of the dielectric material. More than one such common region may be included in each cell. In one form, two such regions are provided adjacent source and drain diffusions in a cell that also includes a select transistor positioned between them. In another form, NAND arrays of strings of memory cells store charge in regions of a dielectric layer sandwiched between word lines and the semiconductor substrate.
Abstract:
One embodiment of the present invention includes applying a first value to a bit line, boosting word lines associated with the bit line and a common selection line to create a first condition based on the first value, and cutting off a boundary non-volatile storage element associated with the common selection line to maintain the first condition for a particular non-volatile storage element associated with the bit line and common selection line. A second value is applied to the bit line and at least a subset of the word lines are boosted to create a second condition for a different non-volatile storage element associated with the bit line and common selection line. The second condition is based on the second value. The first condition and the second condition overlap in time. Both non-volatile storage elements are programmed concurrently, based on their associated conditions.
Abstract:
A peripheral card having a Personal Computer (“PC”) card form factor and removably coupled externally to a host system is further partitioned into a mother card portion and a daughter card portion. The daughter card is removably coupled to the mother card. In the preferred embodiment, a low cost flash “floppy” is accomplished with the daughter card containing only flash EEPROM chips and being controlled by a memory controller residing on the mother card. Other aspects of the invention includes a comprehensive controller on the mother card able to control a predefined set of peripherals on daughter cards connectable to the mother card; relocation of some host resident hardware to the mother card to allow for a minimal host system; a mother card that can accommodate multiple daughter cards; daughter cards that also operates directly with hosts having embedded controllers; daughter cards carrying encoded data and information for decoding it; and daughter cards with security features.
Abstract:
Tracking cells are used in a memory system to improve the read process. The tracking cells can provide an indication of the quality of the data and can be used as part of a data recovery operation if there is an error. The tracking cells provide a means to adjust the read parameters to optimum levels in order to reflect the current conditions of the memory system. Additionally, some memory systems that use multi-state memory cells will apply rotation data schemes to minimize wear. The rotation scheme can be encoded in the tracking cells based on the states of multiple tracking cells, which is decoded upon reading.
Abstract:
A non-volatile memory device is provided with a controller and includes method that controls memory operations and to emulate the memory and communication characteristics of a legacy memory device. In this way, the memory device is compatible with a host that was originally designed to operate the legacy memory device. In particular, the controller performs the emulation to the host taking into account differences such as multibit memory, error correction requirement, memory support of overwrites, and erasable block sizes.
Abstract:
A memory using techniques to extract the data content of its storage elements, when the distribution of stored states is degraded, is presented. If the distribution of stored states has degraded, secondary evaluations of the memory cells are performed using modified read conditions. Based upon the results of these supplemental evaluations, the memory device determines the read conditions at which to best decide the data stored.
Abstract:
A “smart verify” technique, whereby multi-state memories are programmed using a verify-results-based dynamic adjustment of the multi-states verify range for sequential-state-based verify implementations, is presented. This technique can increase multi-state write speed while maintaining reliable operation within sequentially verified, multi-state memory implementations by providing “intelligent” means to minimize the number of sequential verify operations for each program/verify/lockout step of the write sequence. At the beginning of a program/verify cycle sequence only the lowest state or states are checked during the verify phase. As lower states are reached, additional higher states are added to the verify sequence and lower states can be removed.
Abstract:
One embodiment of the present invention includes applying a first value to a bit line, boosting word lines associated with the bit line and a common selection line to create a first condition based on the first value, and cutting off a boundary non-volatile storage element associated with the common selection line to maintain the first condition for a particular non-volatile storage element associated with the bit line and common selection line. A second value is applied to the bit line and at least a subset of the word lines are boosted to create a second condition for a different non-volatile storage element associated with the bit line and common selection line. The second condition is based on the second value. The first condition and the second condition overlap in time. Both non-volatile storage elements are programmed concurrently, based on their associated conditions.