Abstract:
A desmear module for a horizontal galvanic or wet-chemical process line for metal, in particular copper, deposition on a substrate to be treated for a removal of precipitates comprising a desmear container connectable to a desmear unit, a pump and at least a first liquid connection element for connecting said pump with the desmear unit, wherein said pump is in conjunction with said desmear unit by said at least first liquid connection element; and wherein a treatment liquid level is provided inside the desmear module, which is above an intake area of the pump; wherein the desmear module further comprises at least a first liquid area, at least an adjacent second liquid area comprising the intake area of the pump, and at least a first separating element arranged between said at least first liquid area and said at least second liquid area.
Abstract:
In some embodiments, an improved mechanical adhesion of copper metallization to dielectric with partially cured epoxy fillers is presented. In this regard, a substrate build-up film is introduced having epoxy material and a plurality of epoxy microspheres, wherein an interior of the microspheres is not fully cured. Other embodiments are also disclosed and claimed.
Abstract:
The method for separation of metals from electronic cards includes a step of processing the electronic cards in an aqueous medium under supercritical conditions. The method also a later step of crushing solid materials coming from the treatment under supercritical conditions.
Abstract:
The present invention relates to a method for manufacture of fine line circuitry in the manufacture of printed circuit boards, IC substrates and the like. The method utilizes a first conductive layer on the smooth surface of a build-up layer and a second conductive layer selected from electrically conductive polymers, colloidal noble metals and electrically conductive carbon particles on the roughened walls of at least one opening which are formed after depositing the first conductive layer.
Abstract:
Provided is a resin composition which enables the formation of a roughened surface having a low roughness degree on the surface of an insulation layer in a printed wiring board material when used on the insulation layer regardless of the roughening conditions employed and also enables the formation of a conductive layer having excellent adhesion properties, heat resistance, heat resistance under absorption of moisture, thermal expansion properties and chemical resistance on the roughened surface. A resin composition comprising (A) an inorganic filler that is soluble in an acid, (B) a cyanic acid ester compound and (C) an epoxy resin.
Abstract:
Multilayer printed wiring boards may be prepared by forming a via hole by laser irradiation in insulating layer formed by a prepreg, comprised of a glass cloth impregnated with a thermosetting resin composition, and subjecting the via hole to a glass etching treatment with a glass etching solution and then to a desmear treatment with an oxidizing agent solution. By such a process, etch back phenomenon and excessive protrusion of glass cloth from the wall surface of a via hole can be sufficiently suppressed, and a highly reliable via can be formed. Particularly, a highly reliable via can be formed in a small via hole having a top diameter of 75 μm or below.
Abstract:
A process of making an article of manufacture, the process including constructing an electrical device which implements circuitry having a portion in cavities, the portion defined by an epoxy dielectric material delivered with solid content sufficient that etching the epoxy forms cavities located in, and underneath an initial surface of, the dielectric material, sufficient that the etching of the epoxy uses non-homogeneity with the solid content in bringing about formation of the cavities and sufficient that the etching of the epoxy is such that a plurality of the cavities have a cross-sectional width that is greater than a maximum depth with respect to the initial surface, wherein the etching forms the cavities, and a conductive material, a portion of the conductive material in the cavities thereby forming teeth in the cavities, such that the conductive material forms the portion of the circuitry of the electrical device.
Abstract:
A multi-layer printed circuit board including a core substrate, lower interlayer resin insulating layers formed on the surfaces of the core substrate, respectively, through-hole conductors formed in penetrating holes penetrating through the core substrate and the lower interlayer resin insulating layers, conductor circuits formed on the lower interlayer resin insulating layers, respectively, upper interlayer resin insulating layers formed on the conductor circuits and the lower interlayer resin insulating layers, respectively and via hole conductors formed in the upper interlayer resin insulating layers and positioned on the through-hole conductors, respectively.
Abstract:
A wiring board in which lower-layer wiring composed of a wiring body and an etching barrier layer is formed in a concave portion formed on one face of a board-insulating film, upper-layer wiring is formed on the other face of the board-insulating film, and the upper-layer wiring and the wiring body of the lower-layer wiring are connected to each other through a via hole formed in the board-insulating film. The via hole is barrel-shaped, bell-shaped, or bellows-shaped.
Abstract:
The present invention relates to an improved method for the direct metallization of non-conductive substrate surfaces, in particular polyimide surfaces, that is characterized by the process steps of etching the substrate surface with an acidic etching solution that contains peroxide; contacting the etched substrate surface with an acidic treatment solution that contains permanganate; activating the treated substrate surface in an acidic activation solution that contains peroxide; contacting the activated substrate surface with an acidic catalytic solution that contains at least a thiophene derivate and at least a sulfonic acid derivate; metallization of the thus treated substrate surface in an acidic galvanic metallization bath.