Abstract:
A method of designing a cement composition comprises determination of the temperature to which the composition will be exposed in situ; determination of a stable, thermodynamic equilibrium composition of a CaO—Al2O3—SiO2—H2O (CASH) mineral system in the [xonotlite/wollastonite]-grossulaire-anorthite or grossulaire-anorthite-quartz triangles of the Si—Ca—Al phase diagram with a possible contribution of iron and/or magnesium, analogous to the cement when set, at the determined temperature; determining proportions of cement and mineral oxides required to provide a mixture having the determined composition; and defining a series of particulate materials of predetermined particle sizes and densities, comprising cement and mineral oxides in the determined proportions.
Abstract:
A sealant for an oil or geothermal well capable of setting within about 3 to about 6 hours at temperatures less than about 250° F. for shallow wells less than about 10,000 feet and deep wells greater than about 10,000 feet having MgO present in the range of from about 9.9 to about 14.5%, KH2PO4 present in the range of from about 29.7 to about 27.2%, class C fly ash present in the range of from about 19.8 to about 36.3%, class F fly ash present in the range of from about 19.8 to about 0%, boric acid or borax present in the range of from about 0.39 to about 1.45%, and water present in the range of from about 20.3 to about 21.86% by weight of the sealant.A method of sealing wells is disclosed as are compositions for very high temperature wells is disclosed as is a composition for treating oil field wastes.
Abstract translation:一种用于油或地热井的密封剂,能够在低于约10,000英尺的浅井和大于约10,000英尺的深井中在低于约250°F的温度下在约3至约6小时内设定,其中MgO存在于 约9.9至约14.5%的KH 2 PO 4 4存在在约29.7至约27.2%的范围内,C级粉煤灰的存在范围为约 19.8%至约36.3%,F级粉煤灰的存在量范围为约19.8%至约0%,硼酸或硼砂的含量范围为约0.39至约1.45%,水的含量范围为约20.3 至约21.86重量%的密封剂。 公开了一种密封井的方法,正如公开了一种用于处理油田废物的组合物的非常高温井的组合物。
Abstract:
A method for making a sound-insulating load-bearing floor, includes the following steps: applying a sound-insulating material over a load-bearing floor as to form a continuous coating layer; allowing the continuous coating layer to harden; applying a covering floor over said hardened continuous coating layer; wherein the sound-insulating material includes: 40% by weight to 95% by weight, preferably 60% by weight to 90% by weight, with respect to the total weight of the sound-insulating material, of at least one rubber in a subdivided form; 5% by weight to 60% by weight, preferably 10% by weight to 40% by weight, with respect to the total weight of the sound-insulating material, of at least one binding agent including: a first, component including at least one organic compound having at least one acid functional group or a derivative thereof, the first component having a Brookfield viscosity, measured at 23° C., of 0.1 Pa·s to 100 Pa·s, preferably 0.2 Pa·s to 50 Pa·s, more preferably 0.5 Pa·s to 20 Pa·s; and a second component including at least one metal oxide or hydroxide.
Abstract:
A filler component for making an investment casting slurry, which comprises: a major portion of finely divided silica, aluminum silicate, alumina, zircon, or mixtures thereof; and a minor portion of one or more finely divided materials having particles in which, on average, at least one dimension of the particle is at least about four times greater than at least one other dimension of the particle. Typically, the particles are of generally plate-like or needle-like shape.
Abstract:
A honeycomb structure useful as exhaust gas trapping filter, particularly, as a diesel particulate filter (DPF) for trapping particulate matter, etc. in diesel engine exhaust gas and capable of effectively inhibiting defects such as cracks due to thermal stress, by reducing influence of thermal stress generated upon use or regeneration. The honeycomb structure includes: an integrally joined body constituted of plural honeycomb segments at joint faces with a bonding material layer, and an outer peripheral coat layer. Thickness of the bonding material layer satisfies the relation: (T2)=(1.2 to 10.0)×(T1) between an average thickness (T1) at positions (X1) and (X2) located at the both ends in the central axis direction of segments and a maximum thickness (T2) between positions (Y1) and (Y2) apart from respective ends in 3 to 40% of the whole length of the honeycomb segment.
Abstract:
A sprayable and pourable cement composition is provided. The cement composition comprises about 30 to 40 percent by weight calcium silicate, about 20 to 35 percent by weight magnesium oxide and about 25 to 45 percent by weight monopotassium phosphate.
Abstract:
Inorganic resin compositions comprising, in combination, an aqueous solution of metal phosphate, an oxy-boron compound, a wollastonite compound and other optional additives, inorganic composite articles and products reinforced by fillers and fibers including glass fibers obtained from these compositions and processes for preparing said products.
Abstract:
The object of the present invention is to provide a construction and coating composition that effectively utilizes vermiculite as a natural resource and is able to satisfy requirements for humidity control and/or deodorizing as well as an attractive appearance, while also offering superior balance between the amount and rates of moisture absorption and release, in particular. This object is achieved by a composition in which non-expanded vermiculite is blended into a base material so that the blended amount is 5-70 wt % of the total composition (solid portion). In addition, the above construction material can be converted into soil by crushing when it has become a waste construction material.
Abstract:
The invention provides methods of remediating lead and other heavy metals in ammunition traps and shooting ranges. One or more remediation agents is added to a trap or a shooting range. The remediation agent(s) interact with and “fix” heavy metals, rendering them substantially non-leachable. An improved ammunition trap is also provided.
Abstract:
The present invention is directed to magnesium phosphate ceramics and their methods of manufacture. The composition of the invention is produced by combining a mixture of a substantially dry powder component with a liquid component. The substantially dry powder component comprises a sparsely soluble oxide powder, an alkali metal phosphate powder, a sparsely soluble silicate powder, with the balance of the substantially dry powder component comprising at least one powder selected from the group consisting of bioactive powders, biocompatible powders, fluorescent powders, fluoride releasing powders, and radiopaque powders. The liquid component comprises a pH modifying agent, a monovalent alkali metal phosphate in aqueous solution, the balance of the liquid component being water. The use of calcined magnesium oxide as the oxide powder and hydroxylapatite as the bioactive powder produces a self-setting ceramic that is particularly suited for use in dental and orthopedic applications.