Abstract:
An apparatus includes a tunable cavity resonator that includes conductive walls that form a tunable cavity. The tunable cavity has first dimensions when one or more phase change material layers within the tunable cavity have a first state. The tunable cavity has second dimensions when the one or more phase change material layers have a second state.
Abstract:
A device includes a stress relief region between at least two stress domains of a substrate (e.g., of a semiconductor die or other integrated circuit). The stress relief region includes a conductive structure electrically coupling circuitries of the stress domains between which the conductive structure is disposed.
Abstract:
Provided are space-efficient capacitors that have a higher quality factor than conventional designs and improve coupling of electrical energy from a through-glass via (TGV) to a dielectric. For example, provided is a TGV having a non-rectangular cross-section, where one end of the TGV is coupled to a first metal plate. A dielectric material is formed on the first metal plate. A second metal plate is formed on the dielectric material in a manner that overlaps at least a portion of the first metal plate to form at least one overlapped region of the dielectric material. At least a part of the perimeter of the overlapped region is non-planar. The overlapped region can be formed in a shape of a closed ring, in a plurality of portions of a ring shape, in substantially a quarter of a ring shape, and/or in substantially a half of a ring shape.
Abstract:
Methods and apparatuses, wherein the method forms a first plurality of vias in a substrate, further comprising forming the first plurality of vias to be substantially the same height. The method forms a plurality of conductive traces external to the substrate and couples the plurality of conductive traces to the first plurality of vias: wherein the plurality of conductive traces and the first plurality of vias comprise a plurality of conductive turns and wherein the plurality of conductive turns are in a spiral configuration substantially within a first plane.
Abstract:
An apparatus includes a substrate package and a three dimensional (3D) antenna structure formed in the substrate package. The 3D antenna structure includes multiple substructures to enable the 3D antenna structure to operate as a beam-forming antenna. Each of the multiple substructures has a slanted-plate configuration or a slanted-loop configuration.
Abstract:
A filter includes a glass substrate having through substrate vias. The filter also includes capacitors supported by the glass substrate. The capacitors may have a width and/or thickness less than a printing resolution. The filter also includes a 3D inductor within the substrate. The 3D inductor includes a first set of traces on a first surface of the glass substrate coupled to the through substrate vias. The 3D inductor also includes a second set of traces on a second surface of the glass substrate coupled to opposite ends of the through substrate vias. The second surface of the glass substrate is opposite the first surface of the glass substrate. The through substrate vias and traces operate as the 3D inductor. The first set of traces and the second set of traces may also have a width and/or thickness less than the printing resolution.
Abstract:
A diversity receiver switch includes at least one second stage switch configured to communicate with a transceiver. The diversity receiver switch may also include at least one first stage switch coupled between a diversity receiver antenna and the second stage switch(es). The first stage switch(es) may be configured to handle a different amount of power than the second stage switch(es). The diversity receiver switch may include a bank of second stage switches configured to communicate with a transceiver. A first stage switch may be configured to handle more power than each switch in the bank of second stage switches. Alternatively, the diversity receiver switch include a bank of first stage switches coupled between the diversity receiver antenna and a second stage switch. The second stage switch may be configured to handle more power than each of the first stage switches.
Abstract:
Base pads are spaced by a pitch on a support surface. Conducting members, optionally Cu or other metal pillars, extend up from the base pads to top pads. A top pad interconnector connects the top pads in a configuration establishing an inductor current path between the base pads.
Abstract:
Systems for reducing magnetic coupling in integrated circuits (ICs) are disclosed. Related components and methods are also disclosed. The ICs have a plurality of inductors. Each inductor generates a magnetic flux that has a discernible axis. To reduce magnetic coupling between the inductors, the flux axes are designed so as to be non-parallel. In particular, by making the flux axes of the inductors non-parallel to one another, magnetic coupling between the inductors is reduced relative to the situation where the flux axes are parallel. This arrangement may be particularly well suited for use in diplexers having a low pass and a high pass filter.
Abstract:
Some novel features pertain to an integrated device that includes a substrate, a first cavity through the substrate, and a toroid inductor configured around the first cavity of the substrate. The toroid inductor includes a set of windings configured around the first cavity. The set of windings includes a first set of interconnects on a first surface of the substrate, a set of though substrate vias (TSVs), and a second set of interconnects on a second surface of the substrate. The first set of interconnects is coupled to the second set of interconnects through the set TSVs. In some implementations, the integrated device further includes an interconnect material (e.g., solder ball) located within the first cavity. The interconnect material is configured to couple a die to a printed circuit board. In some implementations, the interconnect material is part of the toroid inductor.