Abstract:
Systems and methods are described for interactively and graphically displaying performance information to a user of an HVAC system controlled by a self-programming network-connected thermostat. The information is made on a remote display device such as a smartphone, tablet computer or other computer, and includes a graphical daily summary each of several days. In response to a user selection of a day, detailed performance information is graphically displayed that can include an indication of HVAC activity on a timeline, the number of hours of HVAC activity, as well as one or more symbols on a timeline indicating setpoint changes, and when a setpoint was changed due to non-occupancy.
Abstract:
According to one embodiment, a hazard detector may include a back plate and a front casing coupled to the back plate to define a housing having an interior region and an opening through which air flows into the interior region. A circuit board may be coupled to the back plate and have a plurality of components mounted thereon. A smoke chamber may be mid-mounted on the circuit board, mid-mounting being characterized in the smoke chamber extending through a hole formed in the circuit board such that a top surface of the smoke chamber is positioned above a top surface of the circuit board and a bottom surface of the smoke chamber is positioned below a bottom surface of the circuit board, whereby an interior region of the smoke chamber is accessible to smoke from both the top and bottom surfaces of the circuit board.
Abstract:
A control unit for controlling the operation of at least one smart-home system may include at least one occupancy sensor and a processing system. The processing system may be configured to receive readings from the at least one occupancy sensor during a time interval; compare information derived from the readings to at least one threshold criterion to establish whether the one or more occupancy sensors reliably determined occupancy of an enclosure in which the control unit is installed during the time interval; and enable an away-state feature of the control unit if it is determined that the one or more occupancy sensors reliably determined occupancy of an enclosure during the time interval.
Abstract:
Various arrangements for promoting energy efficiency in association with an HVAC system of an enclosure are presented. A first HVAC schedule may be accessed that includes setpoints. The HVAC system may be operated according to the first HVAC schedule. The first HVAC schedule may be processed to generate a second HVAC schedule representative of what would have been generated by an automated schedule learning algorithm operating over the period of time. The second HVAC schedule can be simulated using a thermal model of the enclosure to determine a hypothetical cost of operating the HVAC system according to the second HVAC schedule over the period of time. Information representative of an energy cost difference between an actual cost of operating the HVAC system according to the first HVAC schedule and the hypothetical cost of operating the HVAC system according to the second HVAC schedule can be generated.
Abstract:
The current application is directed to intelligent controllers that continuously, periodically, or intermittently calculate and display the time remaining until a control task is projected to be completed by the intelligent controller. In general, the intelligent controller employs multiple different models for the time behavior of one or more parameters or characteristics within a region or volume affected by one or more devices, systems, or other entities controlled by the intelligent controller. The intelligent controller collects data, over time, from which the models are constructed and uses the models to predict the time remaining until one or more characteristics or parameters of the region or volume reaches one or more specified values as a result of intelligent controller control of one or more devices, systems, or other entities.
Abstract:
Embodiments provided herein relate to implementing a household policy within a household environment. In one example, a method includes: receiving, at a processor, the household policy; interpreting the household policy to extract one or more conditional events associated with the household policy; monitoring, via at least one sensing smart device in the household environment, for satisfaction of the one or more conditional events; and when the one or more events is satisfied, implement one or more controls on at least one conditionally controlled smart device in the household environment, the at least one smart device affecting the household environment.
Abstract:
A user-friendly programmable thermostat is described that includes receiving an immediate-control input to change set point temperature, controlling temperature according to the set point temperature for a predetermined time interval, and then automatically resetting the set point temperature upon the ending of the predetermined time interval such that the user is urged to make further immediate-control inputs. A schedule for the programmable thermostat is automatically generated based on the immediate-control inputs. Methods are also described for receiving user input relating to the user's preference regarding automatically generating a schedule, and determining whether or not to automatically adopt an automatically generated schedule based on the received user input.
Abstract:
A particular smart hazard detector may itself function as a guide during a process of installation of the same at an installation location. Additionally, the installation location of the particular smart hazard detector may play a central role in how various settings of the smart hazard detector are defined and adjusted over time.
Abstract:
A particular smart hazard detector may itself function as a guide during a process of installation of the same at an installation location. Additionally, the installation location of the particular smart hazard detector may play a central role in how various settings of the smart hazard detector are defined and adjusted over time.
Abstract:
The current application is directed to intelligent controllers that use sensor output and electronically stored information, including one or more of electronically stored rules, parameters, and instructions, to determine whether or not one or more types of entities are present within an area, volume, or environment monitored by the intelligent controllers. The intelligent controllers select operational modes and modify control schedules with respect to the presence and absence of the one or more entities. The intelligent controllers employ feedback information to continuously adjust the electronically stored parameters and rules in order to minimize the number of incorrect inferences with respect to the presence or absence of the one or more entities and in order to maximize the efficiency by which various types of systems controlled by the intelligent controllers carry out selected operational modes.