Abstract:
A target material refinement device may include a refinement tank to accommodate a target material, a heating section to heat the interior of the refinement tank, and an oxygen-atom removing section to remove oxygen atoms present in the target material.
Abstract:
An EUV light source device properly compensates the wave front of laser beam which is changed by heat. A wave front compensator and a sensor are provided in an amplification system which amplifies laser beam. The sensor detects and outputs changes in the angle (direction) of laser beam and the curvature of the wave front thereof. A wave front compensation controller outputs a signal to the wave front compensator based on the measurement results from the sensor. The wave front compensator corrects the wave front of the laser beam to a predetermined wave front according to an instruction from the wave front compensation controller.
Abstract:
A laser apparatus includes a first semiconductor laser outputting first continuous-wave laser light; a first amplifier a wavelength conversion system outputting second pulse laser light; an excimer amplifier amplifying the second pulse laser light; a monitor module; and a processor calculating a center wavelength being an average of a measured value of the wavelength of the third pulse laser light output at the first target wavelength and a measured value of the wavelength thereof output at the second target wavelength, calculating a wavelength difference of the measurement values, calculating an average current value of a current flowing through the first semiconductor laser, calculating a current value difference such that a difference between a target wavelength difference and the wavelength difference decreases, and calculating a first current value at the first target wavelength and a second current value at the second target wavelength to control the first semiconductor laser.
Abstract:
A laser processing apparatus includes a placement base on which a workpiece is placed, a beam shaping optical system that shapes laser light such that a first laser light irradiated region of a mask blocking part of the laser light has a rectangular shape having short edges and long edges, the beam shaping optical system capable of causing one of a first radiation width of the first irradiated region in the direction parallel to the short edges and a second radiation width of the first irradiated region in the direction parallel to the long edges to be fixed and causing the other to be changed, a projection optical system that projects a pattern on the mask onto the workpiece, and a mover that moves the first irradiated region at least in the direction parallel to the short edges to move a second laser light irradiated region of the workpiece.
Abstract:
A line narrowing gas laser device includes an actuator changing a center wavelength of pulse laser light, and a processor controlling the actuator. The processor reads parameters including a number of irradiation pulses of pulse laser light to be radiated to one location of an irradiation receiving object, a shortest wavelength, and a longest wavelength; sets a first pattern with which the center wavelength is changed to approach the longest wavelength from the shortest wavelength and a second pattern with which the center wavelength is changed to approach the shortest wavelength from the longest wavelength such that at least one of the first pattern and the second pattern when the number of irradiation pulses is an even number is different from corresponding one when the number of irradiation pulses is an odd number; and controls the actuator so that the first pattern and the second pattern are alternately performed.
Abstract:
An exposure method includes reading data representing a relationship between a first parameter relating to an energy ratio between energy of first pulsed laser light having a first wavelength and energy of second pulsed laser light having a second wavelength longer than the first wavelength and a second parameter relating to a sidewall angle of a resist film that is the angle of a sidewall produced when the resist film is exposed to the first pulsed laser light and the second pulsed laser light, and determining a target value of the first parameter based on the data and a target value of the second parameter; and exposing the resist film to the first pulsed laser light and the second pulsed laser light by controlling a narrowed-line gas laser apparatus to output the first pulsed laser light and the second pulsed laser light based on the target value of the first parameter.
Abstract:
A gas laser apparatus may include a chamber filled with a laser gas; a window provided in the chamber and through which a laser beam passes; an optical path tube connected to the chamber to surround a position of the window in the chamber; a heated gas supply port configured to supply a heated purge gas into a closed space including a space in the optical path tube; and an exhaust port configured to exhaust a gas in the closed space.
Abstract:
A laser radiation optical system for laser doping and post-annealing, the laser radiation system including A. a laser apparatus configured to generate pulsed laser light that belongs to an ultraviolet region, B. a stage configured to move a radiation receiving object in an at least one scan direction, the radiation receiving object being an impurity source film containing at least an impurity element as a dopant and formed on a semiconductor substrate, and C. an optical system including a beam homogenizer configured to shape the beam shape of the pulsed laser light into a rectangular shape and generate a beam for laser doping and a beam for post-annealing that differ from each other in terms of a first beam width in the scan direction but have the same second beam width perpendicular to the scan direction.
Abstract:
A mirror for extreme ultraviolet light includes: a substrate; a multilayer film provided on the substrate and configured to reflect extreme ultraviolet light; and a capping layer provided on the multilayer film, and the capping layer includes a photocatalyst layer containing a photocatalyst, a promotor layer arranged between the photocatalyst layer and the multilayer film and containing a metal for supporting a photocatalytic ability of the photocatalyst contained in the photocatalyst layer, and a barrier layer arranged between the promotor layer and the multilayer film and configured to prevent diffusion of the metal into the multilayer film.
Abstract:
A mirror for extreme ultraviolet light includes: a substrate (41); a multilayer film (42) provided on the substrate and configured to reflect extreme ultraviolet light; and a capping layer (53) provided on the multilayer film, and the capping layer includes a first layer (61) containing a compound of a metal having lower electronegativity than Ti and a non-metal and having a lower density than TiO2, and a second layer (62) arranged between the first layer and the multilayer film and having a higher density than the first layer.