Abstract:
Provided is a method and an apparatus for signaling allocation of resources in a joint transmission communication system. The method includes determining one of a plurality of resource allocation schemes to be implemented by two or more of a plurality of transmission points (TPs) comprising a set of coordinated TPs for enabling said two or more of said TPs to transmit data to a scheduled user equipment (UE). The method may comprise determining a bit length of a resource allocation field for a resource allocation signal message based on a number N of resource blocks groups (RBGs) related to a bandwidth of the joint transmission communication system and a number M of TPs comprising said set of coordinated TPs and further include formatting the resource allocation signal message to provide the resource allocation field based on said determined bit length. The resource allocation signal message is transmitted from only one of said set of coordinated TPs to said scheduled UE.
Abstract:
The subject matter disclosed herein relates to an imaging module comprising an electromagnetic actuator to provide focus-related and image stabilization-related functionality.
Abstract:
Systems and methods which provide training sequence or preamble-based synchronization with respect to non-coherent modulated signals and/or differentially coherent modulated signals are described. Embodiments provide for time synchronization using a technique for mitigating the effect of carrier frequency offset (CFO) with respect to the received signal. Embodiments of the present invention provide for frequency synchronization using a technique for estimating CFO using a constant bias induced with respect to the received signal by CFO. Additionally or alternatively, embodiments of the present invention provide for frequency synchronization using a technique for estimating CFO using phase rotation caused by CFO. The time synchronization and frequency synchronization of embodiments may be performed independently, without requiring the results of one synchronization operation for performing the other synchronization operation.
Abstract:
Systems and methods which provide mitigation of self-interference in spectrally efficient full duplex (e.g., transmit and receive using the same frequency simultaneously) communications are described. Embodiments provide an interference mitigation structure having a multi-tap vector modulator interference cancellation circuit operable to cancel time varying multipath interference in the analog RF domain. A multi-tap vector modulator interference cancellation circuit of embodiments may comprise part of a multi-stage interference cancellation circuit, such as a multi-stage interference cancellation circuit comprising a multi-tap vector modulator interference cancellation circuit and a digital residual interference cancellation circuit. A digital residual interference cancellation circuit of embodiments provides residual interference cancellation. A multi-stage interference cancellation circuit configuration of embodiments is operable to provide cancellation of strong multipath signals as well as cancellation of residual multipath signals, including interference in the received signal associated with circulator leakage, antenna reflection and multipath.
Abstract:
A message retrieving system and method for signal collision mitigation and the method thereof are disclosed. The message retrieving system transmits two orthogonal signals over two isolated antenna during a time period that it expects to receive the response. Two virtual channels are artificially created and the collision of response signals originated from the respondents is mitigated.
Abstract:
The present invention discloses a fluid cooling assembly which facilitates turbulent flow inside the assembly so as to achieve better heat dissipating effect. The cooling assembly comprises an enclosed chamber with an inlet and an outlet for fluid to pass through; together with a heat spreader; a plurality of micropillars and a plurality of heat dissipating fins installed inside the assembly. When fluid flows through the chamber, these elements in combination are adapted to create an enhanced turbulent flow upon the fluid so as to effectively dissipate heat from said heat spreader through the fluid.
Abstract:
An apparatus for adjusting a zoom lens that includes a mechanical structure having a plurality of lens assemblies and an actuator to adjust a zoom level or focus of the apparatus.
Abstract:
Systems and methods which provide mitigation of self-interference in spectrally efficient full duplex (e.g., transmit and receive using the same frequency simultaneously) communications are described. Embodiments provide an interference mitigation structure having a multi-tap vector modulator interference cancellation circuit operable to cancel time varying multipath interference in the analog RF domain. A multi-tap vector modulator interference cancellation circuit of embodiments may comprise part of a multi-stage interference cancellation circuit, such as a multi-stage interference cancellation circuit comprising a multi-tap vector modulator interference cancellation circuit and a digital residual interference cancellation circuit. A digital residual interference cancellation circuit of embodiments provides residual interference cancellation. A multi-stage interference cancellation circuit configuration of embodiments is operable to provide cancellation of strong multipath signals as well as cancellation of residual multipath signals, including interference in the received signal associated with circulator leakage, antenna reflection and multipath.
Abstract:
A transmission-reflectance swappable Raman device and a method thereof are disclosed. The excitation light is selectively directed to the sample in one direction for generating the transmission Raman signal in transmission mode or in another direction for generating the reflectance Raman signal in reflectance mode. The content of an analyte in a sample can be determined by analyzing transmission and reflectance Raman signal.
Abstract:
This invention relates to a new compound represented by formula (I). Particularly, the new compound is used as an additive in copper electroplating. A chemical structure for the leveler, an electroplating bath containing the same, a method of preparing the additive and a method of electroplating a substrate with the electroplating bath containing the additive are disclosed. The additive compound/molecule of the present invention provides a branched structure at each ends, wherein each of the branches comprises a positively charged nitrogen moiety. The additive compound/molecule is formed by linking the branches having the positive charged nitrogen moieties to the backbone of the additive compound/molecule. This leads to a high charge density novel additive compound/molecule.