Abstract:
A manufacturing method of a semiconductor device includes the steps of depositing a metallic film (light-shielding film), an insulating film and a semiconductor film in this order on an insulating substrate, and after patterning the insulating film and the semiconductor film in a predetermined shape, oxidizing an exposed region of the metallic film using the insulating film and the semiconductor film as a mask. As a result, the light-shielding film composed of the metallic film is formed so as to cover the semiconductor film to block light from an external portion. The manufacturing method permits a process of forming a resist pattern for use in forming the light-shielding film and a process of etching the light-shielding film to be omitted, thereby reducing the required number of processes. Moreover, as a level difference is not generated around the light-shielding film, a generation of a level difference on the semiconductor film can be prevented. Furthermore, as the light-shielding film can be formed completely overlapped with the semiconductor film, a reduction in a display region of the semiconductor device can be avoided, thereby improving an aperture ratio.
Abstract:
A process for developing conductive interconnect regions between integrated circuit semiconductor devices formed on an insulating substrate utilizes the semiconductor material itself for formation of device interconnect regions.A patterned layer of semiconductor material is formed directly on the surface of an insulating substrate. The patterned layer includes regions where semiconductor devices are to be formed and regions which are to be used to interconnect terminals of predetermined ones of the semiconductor devices. After forming the semiconductor devices in selected regions of the semiconductor material, the regions of the semiconductor material patterned for becoming interconnects are converted to a metallic compound of the semiconductor material.
Abstract:
A thin film transistor having increased channel length and self-aligned source and drain regions is fabricated by forming a gate electrode on an insulation film disposed on a substrate. Portions of the insulation film are then etched on opposite sides of the gate electrode, as well as beneath part of the gate electrode. A gate insulation film is then formed on the entire exposed surface of the gate electrode, and a semiconductor layer is then formed on the entire gate insulation film, as well as portions of the insulation film. Doping impurities may then be implanted at an angle other than 90.degree. to the surface of the substrate to achieve a thin film transistor having an extended channel length but occupying a relatively small area on the surface of the substrate.
Abstract:
In etching a polysilicon layer above a gate electrode layer, a portion of the gate electrode layer is left thereunder. The etching process of that polysilicon layer and that gate electrode layer is carried out in two steps of etching the polysilicon layer and an interlayer insulating layer, and etching the gate electrode layer and the gate oxide film. Therefore, the amount that is removed from an SOI layer can be suppressed in the manufacturing process thereof.
Abstract:
A method for fabricating an LCD-TFT, which can prevent degradation of image quality of a liquid crystal display by preventing blackening of the pixel electrode due to H.sub.2 plasma at the time of deposition of a protective insulation film. The method includes the steps of forming a gate electrode on a transparent glass substrate, and forming a gate insulation film, a semiconductor layer, and an impurity doped semiconductor layer successively over the surface of the substrate. The semiconductor layer and the impurity doped semiconductor layer are patterned, leaving layers only over a part of the gate insulation film over the gate electrode. A pixel electrode is formed on a part of the gate insulation film offset from the gate electrode. A metal barrier layer and source/drain electrodes are over the surface of the substrate. The metal barrier layer and the source/drain electrodes are patterned so as to expose the impurity doped semiconductor layer over the gate electrode and to cover all the surface of the pixel electrode. The semiconductor layer under the impurity doped semiconductor layer is exposed by carrying out a selective etching of the exposed impurity doped semiconductor layer with the metal barrier layer and the source/drain electrodes used as masks. A protective insulation layer is formed over the surface of the substrate, and the pixel electrode is exposed by selectively removing the protective insulation layer, the metal barrier layer and the source/drain electrodes over the pixel electrode.
Abstract:
The invention provides a semi-conductor light valve device and a process for fabricating the same. The device comprises a composite substrate having a supporte substrate, a light-shielding thin film formed on said supporte substrate and semiconductive thin film disposed on the light-shielding thin film with interposing an insulating thin film. A switching element made of a transistor and a transparent electrode for driving light valve are formed on the semiconductive thin film, and the switching element and the transparent electrode are connected electrically with each other. The transistor includes a channel region in the semiconductive thin film and a main gate electrode for controlling the conduction in the channel region, and the light-shielding thin film layer is so formed as to cover the channel region on the side opposite to said channel region, so as to prevent effectively a back channel and shut off the incident light.
Abstract:
On the surface of an insulating substrate, a semi-conductor layer composed of a semiconductor layer of a first conductivity type on which a high-concentration semiconductor layer of the first conductivity type is formed. By selectively etching the semiconductor layer, the high-concentration external base region of the first conductivity is left, and at the same time, only a thicker prospective internal base region just under the external base region and a prospective emitter region and prospective collector region, which are located on both sides of the prospective internal base region and have steps between themselves and the prospective internal base region, are left to form island regions. A sidewall insulating film is formed which covers at least the sidewalls on the prospective collector region side among sidewalls of the external base region and sidewalls at the steps of the prospective internal base region adjoining the sidewalls of the external base region. The emitter region and collector region of the second conductivity type are formed by ion implantation perpendicular to the substrate with the insulating film covering the external base region and the sidewall insulating film as blocking mask.
Abstract:
A process for developing conductive interconnect regions between integrated circuit semiconductor devices formed on an insulating substrate utilizes the semiconductor material itself for formation of device interconnect regions.A patterned layer of semiconductor material is formed directly on the surface of an insulating substrate. The patterned layer includes regions where semiconductor devices are to be formed and regions which are to be used to interconnect terminals of predetermined ones of the semiconductor devices. After forming the semiconductor devices in selected regions of the semiconductor material, the regions of the semiconductor material patterned for becoming interconnects are converted to a metallic compound of the semiconductor material.
Abstract:
Process for the production of semiconductor devices by using silicon-on-insulator (SOI) techniques. The Si layers of the SOI structure include an interfacial layer of Si and a buffer layer of Si formed thereon, whereby the formation of stacking faults in the Si layers can be effectively prevented. Pretreatment of the underlying insulating material with a molybdate solution and interposition of an additional layer of slowly grown single-crystalline Si between the buffer layer of Si and the overlying active Si layer are also effective to inhibit the stacking faults. Semiconductor devices with high quality can be produced with good yield.
Abstract:
This invention relates to improvements in the SOS technology including the so-called laser annealing processing. According to this invention, a semiconductor layer of an SOS structure consists of the three layers of an interface layer made up of twins, a seed crystalline layer and a re-grown layer far thicker than the preceding two layers when viewed from the side of an insulating substrate. The re-grown layer is formed in such a way that a semiconductor layer deposited on the insulating substrate is irradiated with an electromagnetic wave, for example, pulsed ruby laser beam, which is absorbed substantially uniformly by a portion except the interface layer and the seed crystalline layer. According to this invention, the quality of the re-grown layer is improved, and the mobility of carriers is enhanced. As a result, the operating speed of a semiconductor device employing the SOS structure is raised, and the leakage current is reduced.