Monolithically integrated high power laser optical device
    91.
    发明申请
    Monolithically integrated high power laser optical device 有权
    单片集成大功率激光光学器件

    公开(公告)号:US20030210723A1

    公开(公告)日:2003-11-13

    申请号:US10141862

    申请日:2002-05-10

    Abstract: An optical device, including a monolithically integrated diode laser and semiconductor optical amplifier, that has reduced linewidth and improved side mode suppression for a given output power target. In a preferred embodiment, the diode laser is detuned from a gain peak wavelength to an emission wavelength. The semiconductor optical amplifier has an active region that is bandgap shifted to move its gain peak towards the emission wavelength of the laser diode, thus reducing its linewidth enhancement factor. The diode laser is preferably either a gain-coupled or index-coupled distributed feedback laser. The bandgap shift can be effected by known bandgap shifting methods, such as ion implantation, dielectric cap disordering, and laser induced disordering.

    Abstract translation: 一种包括单片集成二极管激光器和半导体光放大器的光学装置,其对于给定的输出功率目标具有减小的线宽和改进的侧模抑制。 在优选实施例中,二极管激光器从增益峰值波长失谐到发射波长。 半导体光放大器具有带隙移位的有源区域,以将其增益峰值朝向激光二极管的发射波长移动,从而减小其线宽增强因子。 二极管激光器优选地是增益耦合或折射率分布反馈激光器。 带隙偏移可以通过已知的带隙移位方法来实现,例如离子注入,介电帽无序和激光诱导的无序化。

    Two-section distributed Bragg reflector laser
    92.
    发明申请
    Two-section distributed Bragg reflector laser 失效
    两段布拉格反射激光器

    公开(公告)号:US20030072344A1

    公开(公告)日:2003-04-17

    申请号:US10266893

    申请日:2002-10-08

    Abstract: There is provided a semiconductor laser comprising a gain section and an adjacent Bragg section, wherein output laser light is emitted via a facet at an interface between air and the gain section, the Bragg section comprising a distributed reflecting structure having a length substantially greater than required to ensure single longitudinal mode operation of the laser in which the side-mode suppression ratio (SMSR) is 35 dB or more, thereby in use substantially suppressing optical feedback from a facet at an interface between the Bragg section and air, and wherein an interface between the Bragg section and the gain section is quantum well intermixed, thereby rendering the interface substantially anti-reflecting at the wavelength of the laser.

    Abstract translation: 提供了包括增益部分和相邻布拉格部分的半导体激光器,其中输出激光经由空气和增益部分之间的界面处的刻面发射,布拉格部分包括分布反射结构,其长度显着大于所需的长度 为了确保侧模抑制比(SMSR)为35dB以上的激光器的单纵模模式动作,从而基本上抑制了从布拉格部和空气之间的界面的小平面的光反馈,并且其中,界面 在布拉格部分和增益部分之间是量子阱良好的混合,从而使界面在激光波长处基本上反射。

    Semiconductor laser device
    93.
    发明申请
    Semiconductor laser device 失效
    半导体激光器件

    公开(公告)号:US20030043872A1

    公开(公告)日:2003-03-06

    申请号:US10219093

    申请日:2002-08-13

    Abstract: Disclosed are semiconductor laser devices which hardly have degradation when used to generate high power of 200 mW or greater over a long period of time. An exemplary semiconductor laser device comprising a semiconductor substrate, and a layer structure formed on the semiconductor substrate and having an active layer with a quantum well layer formed of a ternary system mixed crystal of a Ill-V compound semiconductor. The material of the quantum well layer is formed in an equilibrium phase which is thermodynamically stable at both the growth temperature and the operating temperature. The material preferably has a substantially homogeneous disordered microstructure. In a preferred embodiment, the material comprises GaAsSb. The quantum well layer exhibits improved thermodynamic stability, and the device can emit light in the 980 nm band at high power levels for longer periods of time without failure in comparison to conventional InGaAs 980 nm pumping lasers.

    Abstract translation: 公开了当用于在长时间内产生200mW或更大的大功率时几乎不劣化的半导体激光器件。 一种示例性半导体激光器件,包括半导体衬底和形成在半导体衬底上并具有由III-V族化合物半导体的三元系混合晶形成的量子阱层的有源层的层结构。 量子阱层的材料形成在平衡相,在生长温度和工作温度下都是热力学稳定的。 该材料优选具有基本均匀的无序微结构。 在优选实施例中,该材料包括GaAsSb。 量子阱层表现出改进的热力学稳定性,器件可以在高功率水平下在980nm波段内发射较长时间的光,而与常规的InGaAs 980nm泵浦激光器相比,可以不发生故障。

    Semiconductor laser device
    94.
    发明申请
    Semiconductor laser device 失效
    半导体激光器件

    公开(公告)号:US20020146051A1

    公开(公告)日:2002-10-10

    申请号:US10114059

    申请日:2002-04-03

    CPC classification number: B82Y20/00 H01S5/16 H01S5/3413 H01S5/34386

    Abstract: A semiconductor laser device is disclosed that improves reliability during high-power oscillation. On a plane of an n-type GaAs substrate, grown are an n-type GaAs buffer layer, an n-type In0.48Ga0.52P lower cladding layer, an n-type or i-type Inx1Ga1-x1As1-y1Py1 optical waveguide layer, an i-type GaAs1-y2Py2 tensile-strain barrier layer, an Inx3Ga1-x3As1-y3Py3 compressive-strain quantum-well active layer, an i-type GaAs1-y2Py2 tensile-strain barrier layer, a p-type or i-type Inx1Ga1-x1As1-y1Py1 upper optical waveguide layer, a p-type In0.48Ga0.52P first upper cladding layer, a GaAs etching stop layer, a p-type In0.48Ga0.52P second upper cladding layer and a p-type GaAs contact layer. Two ridge trenches are formed on the resultant structure, and current non-injection regions are formed by removing the p-type GaAs contact layer in portions extending inwardly by 30 nullm from cleavage positions of edge facets of the resonator on a top face of a ridge portion between the ridge trenches.

    Abstract translation: 公开了一种在高功率振荡期间提高可靠性的半导体激光器件。 在n型GaAs衬底的平面上,生长为n型GaAs缓冲层,n型In0.48Ga0.52P下包层,n型或i型Inx1Ga1-x1As1-y1Py1光波导层 i型GaAs1-y2Py2拉伸应变阻挡层,Inx3Ga1-x3As1-y3Py3压缩应变量子阱有源层,i型GaAs1-y2Py2拉伸应变阻挡层,p型或i型 Inx1Ga1-x1As1-y1Py1上部光波导层,p型In0.48Ga0.52P第一上部包层,GaAs蚀刻停止层,p型In0.48Ga0.52P第二上部包层和p型GaAs接触 层。 在所得结构上形成两个脊沟槽,并且通过从脊的顶面上的谐振器的边缘切口的切割位置向内延伸30微米的部分去除p型GaAs接触层,形成电流的非注入区域 脊沟槽之间的部分。

    Method of manufacturing optical devices and related improvements
    95.
    发明申请
    Method of manufacturing optical devices and related improvements 失效
    制造光学器件的方法及相关改进

    公开(公告)号:US20020137251A1

    公开(公告)日:2002-09-26

    申请号:US09788975

    申请日:2001-02-20

    Abstract: There is disclosed an improved method of manufacturing of an optical device (40), particularly semiconductor optoelectronic devices such as laser diodes, optical modulators, optical amplifiers, optical switches, and optical detectors. The invention provides a method of manufacturing optical device (40), a device body portion (15) from which the device (40) is to be made including a Quantum Well (QW) structure (30), the method including the step of: processing the device body portion (15) so as to create extended defects at least in a portion (53) of the device portion (5). Each extended defect is a structural defect comprising a plurality of adjacent nullpointnull defects.

    Abstract translation: 公开了一种改进的光学器件(40)的制造方法,特别是诸如激光二极管,光调制器,光放大器,光开关和光检测器之类的半导体光电器件。 本发明提供一种制造光学装置(40)的方法,装置主体部分(15),由该装置(40)构成包括量子阱(QW)结构(30)的装置(40),该方法包括以下步骤: 处理所述装置主体部分(15)以至少在所述装置部分(5)的一部分(53)中产生延伸的缺陷。 每个延伸的缺陷是包括多个相邻“点”缺陷的结构缺陷。

    Quantum well intermixing
    96.
    发明申请
    Quantum well intermixing 失效
    量子井混合

    公开(公告)号:US20020003918A1

    公开(公告)日:2002-01-10

    申请号:US09802071

    申请日:2001-03-08

    Abstract: The present invention provides a novel technique based on gray scale mask patterning (110), which requires only a single lithography and etching step (110, 120) to produce different thickness of SiO2 implantation mask (13) in selected regions followed by a one step IID (130) to achieve selective area intermixing. This novel, low cost, and simple technique can be applied for the fabrication of PICs in general, and WDM sources in particular. By applying a gray scale mask technique in IID in accordance with the present invention, the bandgap energy of a QW material can be tuned to different degrees across a wafer (14). This enables not only the integration of monolithic multiple-wavelength lasers but further extends to integrate with modulators and couplers on a single chip. This technique can also be applied to ease the fabrication and design process of superluminescent diodes (SLDs) by expanding the gain spectrum to a maximum after epitaxial growth.

    Abstract translation: 本发明提供了一种基于灰度掩模图案化(110)的新技术,其仅需要单个光刻和蚀刻步骤(110,120),以在所选区域中产生不同厚度的SiO 2注入掩模(13),随后是一步 IID(130)实现选择性区域混合。 这种新颖,低成本和简单的技术可以应用于一般的PIC的制造,特别是WDM源。 通过根据本发明在IID中应用灰度掩模技术,可以跨越晶片(14)将QW材料的带隙能量调节到不同的程度。 这不仅可以实现单片多波长激光器的集成,而且还可以在单​​个芯片上进一步扩展到与调制器和耦合器集成。 该技术也可以用于通过在外延生长之后将增益谱扩展到最大值来简化超发光二极管(SLD)的制造和设计过程。

Patent Agency Ranking