Abstract:
An emission can be obtained from a sample in response to excitation using a specified range of excitation frequencies. Such excitation can include generating a specified chirped waveform and a specified downconversion local oscillator (LO) frequency using a digital-to-analog converter (DAC), upconverting the chirped waveform via mixing the chirped waveform with a specified upconversion LO frequency, frequency multiplying the upconverted chirped waveform to provide a chirped excitation signal for exciting the sample, receiving an emission from sample, the emission elicited at least in part by the chirped excitation signal, and downconverting the received emission via mixing the received emission with a signal based on the specified downconversion LO signal to provide a downconverted emission signal within the bandwidth of an analog-to-digital converter (ADC). The specified chirped waveform can include a first chirped waveform during a first duration, and a second chirped waveform during a second duration.
Abstract:
The invention provides systems for characterizing a biological sample by analyzing emission of fluorescent light from the biological sample upon excitation and methods for using the same. The system includes a laser source, collection fibers, a demultiplexer and an optical delay device. All references cited herein are incorporated by reference in their entirety as though fully set forth. Unless defined otherwise, technical and scientific tens used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
Abstract:
Systems, methods, compositions, and apparatus for laser induced ablation spectroscopy are disclosed. A sample site position sensor, stage position motors operable to move the stage in three independent spatial coordinate directions, and a stage position control circuit can move an analysis sample site to selected coordinate positions for laser ablation. Light emitted from a plasma plume produced with laser ablation can be gathered into a lightguide fiber bundle that is subdivided into branches. One branch can convey a first portion of the light to a broadband spectrometer operable to analyze a relatively wide spectral segment, and a different branch can convey a second portion of the light to a high dispersion spectrometer operable to measure minor concentrations and/or trace elements. Emissions from a plasma plume can be simultaneously analyzed in various ways using a plurality of spectrometers having distinct and/or complementary capabilities.
Abstract:
An improved evaluation circuit which allows high sensitivity in an economical manner. For this purpose, a shift register having at least one data input, a clock input, a plurality of register stages and at least one data output is provided, wherein the output of the analog-to-digital converter is connected to the data input of the shift register. With a shift register, fluorescent light and scattered light can be temporally distinguished in an economical manner.
Abstract:
A time-resolved spectroscopy system employing a time-division multiplexing optical device with no dispersive optical elements to perform lifetime and concentration measurements in multi-species samples, is disclosed. Some examples include fluorescence and cavity ring-down spectroscopy. The system is unique in its compactness and simplicity of operation. In one embodiment, the system makes use of only one photo-detector and an efficient linear regression algorithm. The system offers a measurement time for multiple species measurements of less than 1 s. The system can also be used to perform fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy. Four methods to de-convolve a multi-component, exponentially decaying optical signal such as obtained with the system disclosed here, are presented. These methods may be applied to the measurement of fluorescence decay lifetimes and cavity ring-down times, the latter used extensively for the measurement of gas and trace-gas concentrations in complex mixtures, via absorption spectroscopy.
Abstract:
A spectrum detecting device including a laser apparatus, an optical splitting apparatus, an optical gate, a first polarizer, a second polarizer, and an optical analysis apparatus is provided. The optical splitting apparatus splits the laser beam providing from the laser apparatus into a first and a second light beam, and the second light beam is transmitted to a sample to produce a spectral signal. The optical gate activated by the first light beam is disposed between the optical analysis apparatus and the sample. The first polarizer is disposed between the sample and the optical gate, and the second polarizer is disposed between the optical gate and the optical analysis apparatus. The spectral signal passes through the first polarizer, the optical gate, and the second polarizer to be transmitted and received to the optical analysis apparatus when the optical gate is activated and turned on in a predetermined time period.
Abstract:
A time correlated single photon counting system having a programmable delay generator triggered by a laser fire event detector. The system may be used for chemical agent detection based on Rayleigh scattering using optical time domain reflectometry techniques. The system may also be used for Raman detection using frequency to time transformations.
Abstract:
An adaptive spectral sensor, and methods of using the sensor. The sensor uses a programmable band pass transmission filter to produce both contrast signals, which discriminate specific target materials from background materials by comparing spectral signatures in hardware, and scene radiance spectra. The adaptive spectral sensor may measure one or more scene spectra and may form a spectral image. The sensor may automatically adjust to changing spectral, spatial and temporal conditions in the environment being monitored, by changing sensor resolution in those dimensions and by changing the detection band pass. The programmable band pass can be changed on-the-fly in real time to implement a variety of detection techniques in hardware or measure the spatial or spectral signatures of specific materials and scenes.
Abstract:
Multimodal/multispectral images of a population of cells are simultaneously collected. Photometric and/or morphometric features identifiable in the images are used to separate the population of cells into a plurality of subpopulations. Where the population of cells includes diseased cells and healthy cells, the images can be separated into a healthy subpopulation, and a diseased subpopulation. Where the population of cells does not include diseased cells, one or more ratios of different cell types in patients not having a disease condition can be compared to the corresponding ratios in patients having the disease condition, enabling the disease condition to be detected. For example, blood cells can be separated into different types based on their images, and an increase in the number of lymphocytes, a phenomenon associated with chronic lymphocytic leukemia, can readily be detected.
Abstract:
A high-speed absorption spectrographic system employs a slit-less spectroscope to obtain high-resolution, high-speed spectrographic data of combustion gases in an internal combustion engine allowing precise measurement of gas parameters including temperature and species concentration.