Semiconductor device structure and method for forming the same

    公开(公告)号:US11417751B2

    公开(公告)日:2022-08-16

    申请号:US16837432

    申请日:2020-04-01

    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a plurality of first semiconductor layers and a plurality of second semiconductor layers on a substrate, and the first semiconductor layers and the second semiconductor layers are alternately stacked. The method also includes forming a dummy gate structure over the first semiconductor layers and the second semiconductor layers. The method further includes removing a portion of the first semiconductor layers and second semiconductor layers to form a trench, and removing the second semiconductor layers to form a recess between two adjacent first semiconductor layers. The method includes forming a dummy dielectric layer in the recess, and removing a portion of the dummy dielectric layer to form a cavity. The method also includes forming an inner spacer layer in the cavity.

    Inner Spacer Formation in Multi-Gate Transistors

    公开(公告)号:US20210391447A1

    公开(公告)日:2021-12-16

    申请号:US17458087

    申请日:2021-08-26

    Abstract: A method of fabricating a semiconductor device includes forming a channel member suspended above a substrate, depositing a dielectric material layer wrapping around the channel member, performing an oxidation treatment to a surface portion of the dielectric material layer, selectively etching the surface portion of the dielectric material layer to expose sidewalls of the channel member, performing a nitridation treatment to remaining portions of the dielectric material layer and the exposed sidewalls of the channel member, thereby forming a nitride passivation layer partially wrapping around the channel member. The method also includes repeating the steps of performing the oxidation treatment and selectively etching until top and bottom surfaces of the channel member are exposed, removing the nitride passivation layer from the channel member, and forming a gate structure wrapping around the channel member.

    Method for FinFET fabrication and structure thereof

    公开(公告)号:US11056393B2

    公开(公告)日:2021-07-06

    申请号:US16298720

    申请日:2019-03-11

    Abstract: A method for FinFET fabrication includes forming at least three semiconductor fins over a substrate, wherein first, second, and third of the semiconductor fins are lengthwise substantially parallel to each other, spacing between the first and second semiconductor fins is smaller than spacing between the second and third semiconductor fins; depositing a first dielectric layer over top and sidewalls of the semiconductor fins, resulting in a trench between the second and third semiconductor fins, bottom and two opposing sidewalls of the trench being the first dielectric layer; implanting ions into one of the two opposing sidewalls of the trench by a first tilted ion implantation process; implanting ions into another one of the two opposing sidewalls of the trench by a second tilted ion implantation process; depositing a second dielectric layer into the trench, the first and second dielectric layers having different materials; and etching the first dielectric layer.

    Inner Spacer Formation in Multi-Gate Transistors

    公开(公告)号:US20230118700A1

    公开(公告)日:2023-04-20

    申请号:US18066354

    申请日:2022-12-15

    Abstract: A method for forming a semiconductor structure includes forming a fin on a semiconductor substrate. The fin includes channel layers and sacrificial layers stacked one on top of the other in an alternating fashion. The method also includes removing a portion of the fin to form a first opening and expose vertical sidewalls of the channel layers and the sacrificial layers, epitaxially growing a source/drain feature in the first opening from the exposed vertical sidewalls of the channel layers and the sacrificial layers, removing another portion of the fin to form a second opening to expose a vertical sidewall of the source/drain feature, depositing a dielectric layer in the second opening to cover the exposed vertical sidewall of the source/drain feature, and replacing the sacrificial layers with a metal gate structure in the second opening. The dielectric layer separates the source/drain feature from contacting the metal gate structure.

Patent Agency Ranking