Abstract:
A method includes generating a layout diagram of a cell of an integrated circuit (IC), and storing the generated layout diagram on a non-transitory computer-readable medium. In the generating the layout diagram of the cell, a first active region is arranged inside a boundary of the cell. The first active region extends along a first direction. At least one gate region is arranged inside the boundary. The at least one gate region extends across the first active region along a second direction transverse to the first direction. A first conductive region is arranged to overlap the first active region and a first edge of the boundary. The first conductive region is configured to form an electrical connection to the first active region.
Abstract:
An integrated circuit includes a layer of a semiconductor device including a standard cell configuration having a fixed gate electrode pitch between gate electrode lines and a resistor formed of metal between the fixed gate electrode pitch of the standard cell configuration. In one embodiment, the integrated circuit can be charged device model (CDM) electrostatic discharge (ESD) protection circuit for a cross domain standard cell having the resistor formed of metal. A method of manufacturing integrated circuits includes forming a plurality of gate electrode lines separated by a gate electrode pitch to form a core standard cell device, applying at least a first layer of metal within the gate electrode pitch to form a portion of a resistor, and applying at least a second layer of metal to couple to the first layer of metal to form another portion of the resistor.
Abstract:
An integrated circuit includes a layer of a semiconductor device including a standard cell configuration having a fixed gate electrode pitch between gate electrode lines and a resistor formed of metal between the fixed gate electrode pitch of the standard cell configuration. In one embodiment, the integrated circuit can be charged device model (CDM) electrostatic discharge (ESD) protection circuit for a cross domain standard cell having the resistor formed of metal. A method of manufacturing integrated circuits includes forming a plurality of gate electrode lines separated by a gate electrode pitch to form a core standard cell device, applying at least a first layer of metal within the gate electrode pitch to form a portion of a resistor, and applying at least a second layer of metal to couple to the first layer of metal to form another portion of the resistor.
Abstract:
A non-transitory computer-readable medium contains thereon a cell library. The cell library includes a plurality of cells configured to be placed in a layout diagram of an integrated circuit (IC). Each cell among the plurality of cells includes a first active region inside a boundary of the cell. The first active region extends along a first direction. At least one gate region is inside the boundary. The at least one gate region extends across the first active region along a second direction transverse to the first direction. A first conductive region overlaps the first active region and a first edge of the boundary. The first conductive region is configured to form an electrical connection to the first active region. The plurality of cells includes at least one cell a width of which in the first direction is equal to one gate region pitch between adjacent gate regions of the IC.
Abstract:
An integrated circuit includes a first diffusion area for a first type transistor. The first type transistor includes a first drain region and a first source region. A second diffusion area for a second type transistor is separated from the first diffusion area. The second type transistor includes a second drain region and a second source region. A gate electrode continuously extends across the first diffusion area and the second diffusion area in a routing direction. A first metallic structure is electrically coupled with the first source region. A second metallic structure is electrically coupled with the second drain region. A third metallic structure is disposed over and electrically coupled with the first and second metallic structures. A width of the first metallic structure is substantially equal to or larger than a width of the third metallic structure.
Abstract:
Some embodiments relate to a method of hierarchical layout design, comprising forming a layout of an integrated circuit (IC) according to a design rule that specifies a minimum design rule distance between a neighboring layout features within the IC. Forming the layout comprises forming first and second standard cells having first and second layout features, respectively, that about one-another so that a distance between the first and second layout features is less than the minimum design rule distance. The method further comprises configuring design rule checking (DRC) to ignore this fail. Instead, the layout is modified with an automated layout tool by merging the first and second layout features, or by removing a portion of the first or second layout feature to increase the distance between the first and second layout features to be greater than or equal to the minimum distance.
Abstract:
A method includes comparing one or more cells to a selection guideline and storing the cells that meet the selection guideline in a non-transient computer readable storage medium to create the cell library based on the comparing. The selection guideline identifies a suitable position of a boundary pin within a cell.
Abstract:
The present disclosure relates to a method and apparatus for forming a multiple patterning lithograph (MPL) compliant integrated circuit layout by operating a construction validation check on unassembled IC cells to enforce design restrictions that prevent MPL conflicts after assembly. In some embodiments, the method is performed by generating a plurality of unassembled integrated circuit (IC) cells having a multiple patterning design layer. A construction validation check is performed on the unassembled IC cells to identify violating IC cells having shapes disposed in patterns comprising potential multiple patterning coloring conflicts. Design shapes within a violating IC cell are adjusted to achieve a plurality of violation free IC cells. The plurality of violation free IC cells are then assembled to form an MPL compliant IC layout. Since the MPL compliant IC layout is free of coloring conflicts, a decomposition algorithm can be operated without performing a post assembly color conflict check.
Abstract:
An integrated circuit includes a first diffusion area for a first type transistor. The first type transistor includes a first drain region and a first source region. A second diffusion area for a second type transistor is separated from the first diffusion area. The second type transistor includes a second drain region and a second source region. A gate electrode continuously extends across the first diffusion area and the second diffusion area in a routing direction. A first metallic structure is electrically coupled with the first source region. A second metallic structure is electrically coupled with the second drain region. A third metallic structure is disposed over and electrically coupled with the first and second metallic structures. A width of the first metallic structure is substantially equal to or larger than a width of the third metallic structure.