Abstract:
Aspects of the present disclosure relate to protecting the contents of memory in an electronic device, and in particular to systems and methods for transferring data between memories of an electronic device in the presence of strong magnetic fields. In one embodiment, a method of protecting data in a memory in an electronic device includes storing data in a first memory in the electronic device; determining, via a magnetic sensor, a strength of an ambient magnetic field; comparing the strength of the ambient magnetic field to a threshold; transferring the data in the first memory to a second memory in the electronic device upon determining that the strength of the ambient magnetic field exceeds the threshold; and transferring the data from the second memory to the first memory upon determining that the strength of the ambient magnetic field no longer exceeds the threshold.
Abstract:
Methods and apparatus for signaling adjustments include identifying, by a user equipment (UE), a change in a reachability state of the UE based at least in part on one or more channel metrics determined by a modem in the UE. Further, the methods and apparatus include adjusting a transmission of connectivity signals (e.g., keep-alive signals) to a server from an application on the UE, the adjusting being based at least in part on an indication of the change in the reachability state provided to the application via an interface in communication with the modem (e.g., modem application programming interface or API). Additionally, the methods and apparatus can include transmitting an indication of the change in the reachability state to the server. Moreover, the methods and apparatus may accommodate signaling adjustments for one or more applications on the UE and one or more servers in a wireless communication system.
Abstract:
A medical system is provided. The medical system includes a guidewire configured to guide a catheter to a target location within a body, the guidewire including a sensor configured to collect sensor data indicative of a location within the body, and an electrical conductor configured to conduct electrical signals representing the sensor data. The medical system further includes a wireless transmitter and a first antenna electrically coupled with the sensor via the electrical conductor and configured to: receive the electrical signals representing the sensor data; generate, from the electrical signals, first wireless signals representing the sensor data; and transmit, via the first antenna, first wireless signals.
Abstract:
A power management system for stack memory thread tasks according to some examples of the disclosure may include a non-collapsible memory region, a collapsible memory region configured below the non-collapsible memory region, a memory management unit in communication with the non-collapsible memory region and the collapsible memory region, the memory management unit operable to allocate a portion of the non-collapsible memory region and a portion of the collapsible memory region to a thread task upon initialization of the thread task and power down the portion of the collapsible memory region allocated to the thread task upon receiving a power down command.
Abstract:
Aspects described herein relate to adaptive control channel detection in wireless communications. A signal-to-interference-and-noise ratio (SINR) of a signal received by a receiver comprising multiple sub-receivers is measured, wherein the SINR is filtered according to a signal combining technology. Based at least in part on the SINR, it is determined whether to utilize the signal combining technology in combining signals related to a channel received over the multiple sub-receivers. Accordingly, the signals related to the channel received over the multiple sub-receivers can be demodulated using the signal combining technology based on determining to utilize the signal combining technology
Abstract:
A method of providing power to an implant includes: transcutaneously receiving first power wirelessly from a source transmitter by a receiver of a power relay device, the receiver of the power relay device being disposed inside a biological body and closer to a skin of the biological body than the implant is to the skin of the biological body; converting the first power into second power that has a substantially different frequency than the first power, or is of different type of power than the first power, or both; and internally coupling the second power from a transmitter of the power relay device to the implant disposed within the biological body.
Abstract:
Various aspects are provided for low-latency wireless local area networks (WLANs). An access point (AP) may transmit a downlink pilot signal for synchronization of the AP with one or more wireless stations. The AP may receive an uplink control block synchronized with the downlink pilot signal including a reservation for uplink transmission from a first wireless station of the one or more wireless stations. The reservation may include an uplink pilot signal and a modulated pilot signal and indicate that the first wireless station has traffic for uplink transmission to the AP. The AP may schedule the first wireless station for uplink transmission during a traffic block after the uplink control block. The AP may estimate a wireless channel to the first wireless station based on the pilot signal and the modulated pilot signal. Other low-latency aspects apply to WLANs in which the AP and associated wireless stations are synchronized.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with improving antenna selection for a UE as part of an access procedure. In an example, a UE with two or more antennas is equipped to obtain receive chain measurements for the two or more antennas associated with the UE when an access procedure is initiated, select an antenna, of the two or more antennas, for transmission based on receive chain measurements for use during at least a portion of the access procedure, and perform the access procedure using the selected antenna. In another example, the UE is equipped to determine that an Access procedure is to be initiated, select an antenna from the two or more antennas based on a selection algorithm, and perform the Access procedure based using the selected antenna. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Disclosed are techniques for determining a severity of motion disorder symptoms by receiving sensor data from one or more sensors, determining that the sensor data represents one or more activities of daily life (ADLs) of a user, assigning one or more probabilities to the one or more determined ADLs, each probability of the one or more probabilities indicating a confidence level that the sensor data represents a corresponding ADL, and providing the sensor data and the one or more probabilities to a motion disorder symptom scoring module that generates one or more scores for the one or more determined ADLs based on the sensor data, each score of the one or more scores indicating the severity of the motion disorder symptoms for a corresponding ADL, and combines the one or more scores and the one or more probabilities to generate an aggregated severity score for the motion disorder symptoms.
Abstract:
Methods and apparatuses relating to wireless communication of a user equipment (UE) are provided including initiating an access procedure for a first radio access technology (RAT) and tuning a receiver to a second RAT for a duration during the access procedure for the first RAT. The methods and apparatuses further include receiving a paging signal via the second RAT during the duration, and tuning the receiver to the first RAT following the duration to continue the access procedure for the first RAT. Other aspects, embodiments, and features are also claimed and described.