Abstract:
A semiconductor package includes a package substrate, a first electronic component and a second package body. The package substrate includes a first conductive layer, a first pillar layer, a first package body and a second conductive layer, wherein the first pillar layer is formed on the first conductive layer, the first package body encapsulates the first conductive layer and the first pillar layer, and the second conductive layer electrically connects to the first pillar layer. The first electronic component is disposed above the second conductive layer of the package substrate. The second package body encapsulates the first electronic component and the second conductive layer.
Abstract:
A method includes the operations performing a first anisotropic etching process to remove a portion of the metal sheet from a top surface of the metal sheet, thereby forming a plurality of first recesses in the metal sheet; mounting a carrier on the top surface of the metal sheet, covering the first recesses; performing a second anisotropic etching process to remove a portion of the metal sheet under the first recesses from the bottom surface of the metal sheet; filling a molding material from the bottom surface of the metal sheet, leaving the bottom surface of the metal sheet exposed; forming a passivation layer on the top surface of the metal sheet, having a plurality of openings therethrough; forming a plurality of first metal vias through the opening; and forming a solder mask layer on the passivation layer, leaving the first metal vias exposed.
Abstract:
A chip package structure and a method for forming a chip package are provided. The chip package structure includes a first package which includes at least a semiconductor die, a dielectric structure surrounding the semiconductor die, and a plurality of conductive structures penetrating through the dielectric structure and surrounding the semiconductor die. The package structure also includes an interposer substrate over the first package and a plurality of conductive features in or over the interposer substrate. The package structure further includes a second package over the interposer substrate, and the first package electrically couples the second package through the conductive structures and the conductive features.
Abstract:
A manufacturing method of a semiconductor package includes the follow steps. Firstly, a carrier is provided. Then, a package substrate is formed. Then, a first electronic component is disposed above the second conductive layer of the package substrate. Then, a second package body encapsulating the first electronic component and the second conductive layer is formed. Then, the carrier is carried. Wherein in the step of forming the package substrate includes a step of forming a first conductive layer on the carrier, a step of forming a first pillar layer on the first conductive layer, a step of forming a first package body encapsulating the first conductive layer and the first pillar layer and a step of forming a second conductive layer on the first pillar layer.
Abstract:
A method for fabricating a molded interposer package includes performing a first anisotropic etching process to remove a portion of the metal sheet from a top surface of the metal sheet, thereby forming a plurality of first recesses in the metal sheet, forming a molding material covering the top surface, filling the first recesses, forming a plurality of first via openings in the molding material, wherein the first via openings expose the top surface, forming a plurality of first metal vias in the first via openings and a plurality of first redistribution layer patterns respectively on the first metal vias, performing a second anisotropic etching process to remove a portion of the metal sheet from a bottom surface of the metal sheet until a bottom of the molding material is exposed, and forming a solder mask layer on the molding material, leaving the first redistribution layer patterns exposed.
Abstract:
The invention provides a semiconductor package and a method for fabricating a base for a semiconductor package. The semiconductor package includes a conductive trace embedded in a base. A semiconductor device is mounted on the conductive trace via a conductive structure.
Abstract:
The invention provides a semiconductor package and a method for fabricating a base for a semiconductor package. The semiconductor package includes a conductive trace embedded in a base. A semiconductor device is mounted on the conductive trace via a conductive structure.
Abstract:
The invention provides a semiconductor package and a method for fabricating a base for a semiconductor package. The semiconductor package includes a conductive trace embedded in a base. A semiconductor device is mounted on the conductive trace via a conductive structure.
Abstract:
A manufacturing method of a semiconductor package includes the follow steps. Firstly, a carrier is provided. Then, a package substrate is formed. Then, a first electronic component is disposed above the second conductive layer of the package substrate. Then, a second package body encapsulating the first electronic component and the second conductive layer is formed. Then, the carrier is carried. Wherein in the step of forming the package substrate includes a step of forming a first conductive layer on the carrier, a step of forming a first pillar layer on the first conductive layer, a step of forming a first package body encapsulating the first conductive layer and the first pillar layer and a step of forming a second conductive layer on the first pillar layer.
Abstract:
The invention provides a semiconductor package and a method for fabricating a base for a semiconductor package. The semiconductor package includes a conductive trace embedded in a base. A semiconductor device is mounted on the conductive trace via a conductive structure.