一种HRB600E高强度螺纹钢及其生产方法

    公开(公告)号:CN116875898A

    公开(公告)日:2023-10-13

    申请号:CN202310848195.4

    申请日:2023-07-11

    摘要: 本发明属于螺纹钢生产的技术领域,具体的涉及一种HRB600E高强度螺纹钢及其生产方法。所述HRB600E高强度螺纹钢,按质量百分比计,其连铸钢坯的成分为:C:0.25‑0.28%,Si:0.45‑0.60%,Mn:1.35‑1.55%,Nb:0.005‑0.010%,Cr:0.15‑0.25%,V:0.10‑0.11%,N:0.0230‑0.0280%,P≤0.035%,S≤0.035%,余量为Fe元素和不可避免的杂质;所述螺纹钢的强屈比≥1.27。所述HRB600E高强度螺纹钢的制备方法,精轧机组的轧制温度为HRB600E高强度螺纹钢的奥氏体未再结晶温度区间;中间坯在精轧机组的累积变形率控制在20~40%。该方法通过调整轧材晶粒在轧制方向和垂直轧制方向上的尺寸比来达到提升螺纹钢强屈比的目的。

    一种可拆卸型螺栓取出器

    公开(公告)号:CN106272253B

    公开(公告)日:2018-02-16

    申请号:CN201610860681.8

    申请日:2016-09-28

    IPC分类号: B25B27/18

    摘要: 本发明提供一种可拆卸型螺栓取出器,其包括:螺杆(1),连接器(3),基础固定块(4),第一定位螺栓(5)和第二定位螺栓(11);在基础固定块的平面(12)上对称分布两个螺纹孔(9),且每个螺纹孔(8)的轴线均垂直于该基础固定块的平面(12);该第一定位螺栓(5)和该第二定位螺栓(11)分别与该基础固定块(4)的两个螺纹孔(9)配合,在该基础固定块(4)的侧面中间处开设一通孔(10),该连接器(3)的一端与该通孔(10)连接,该连接器(3)的另一端固有一个齿套(2),且该齿套(2)设有内螺旋螺纹,该螺杆(1)的中间位置设有螺旋螺纹(7),将所述螺杆(1)竖直旋入所述连接器(3)的另一端。

    一种对窄钢带进行特殊断面尺寸再加工的方法及设备

    公开(公告)号:CN108555021B

    公开(公告)日:2019-08-27

    申请号:CN201810474852.2

    申请日:2018-05-17

    IPC分类号: B21B1/08 B21B9/00

    摘要: 本发明属于钢铁技术中的轧钢领域,公开了一种对窄钢带进行特殊断面尺寸再加工的方法及设备。预先将窄钢带酸洗和分条,在对窄钢带进行再加工之前,预先向惰性气氛室内通惰性气体,惰性气氛室内的氧气含量低于1~3%时,将窄钢带从原料室运入惰性气氛室,进行对窄钢带的再加工操作,其工艺流程为:窄钢带→拆卷机→高频感应加热线圈→轧机→风冷设备→卷取机或切割定尺设备。本发明采用热轧工艺对窄钢带进行再加工,热轧状态下钢带的变形抗力小,金属流动容易,可以较容易的轧成具有特殊断面尺寸形状的钢材,钢材加工成本低、效率高。热轧过程中无氧化现象,产品表面质量高,加热速度快、成本低、无污染性气体排出。

    一种对窄钢带进行特殊断面尺寸再加工的方法及设备

    公开(公告)号:CN108555021A

    公开(公告)日:2018-09-21

    申请号:CN201810474852.2

    申请日:2018-05-17

    IPC分类号: B21B1/08 B21B9/00

    摘要: 本发明属于钢铁技术中的轧钢领域,公开了一种对窄钢带进行特殊断面尺寸再加工的方法及设备。预先将窄钢带酸洗和分条,在对窄钢带进行再加工之前,预先向惰性气氛室内通惰性气体,惰性气氛室内的氧气含量低于1~3%时,将窄钢带从原料室运入惰性气氛室,进行对窄钢带的再加工操作,其工艺流程为:窄钢带→拆卷机→高频感应加热线圈→轧机→风冷设备→卷取机或切割定尺设备。本发明采用热轧工艺对窄钢带进行再加工,热轧状态下钢带的变形抗力小,金属流动容易,可以较容易的轧成具有特殊断面尺寸形状的钢材,钢材加工成本低、效率高。热轧过程中无氧化现象,产品表面质量高,加热速度快、成本低、无污染性气体排出。

    一种计算钒、氮元素对螺纹钢强度贡献量的方法

    公开(公告)号:CN117037945A

    公开(公告)日:2023-11-10

    申请号:CN202311058496.3

    申请日:2023-08-22

    IPC分类号: G16C20/30 G16C20/70

    摘要: 本发明公开了一种计算钒、氮元素对螺纹钢强度贡献量的方法,包括:步骤S1:计算钒元素在螺纹钢中的存在形式对螺纹钢屈服强度的影响以及对抗拉强度的贡献;步骤S2:计算氮化钒粒子的析出温度对螺纹钢屈服强度增量的影响,以及对螺纹钢抗拉强度的影响;步骤S3:计算析出的氮化钒通过影响晶粒度而对螺纹钢屈服强度的贡献,以及对螺纹钢抗拉强度的贡献;步骤S4:计算钒、氮元素对螺纹钢屈服强度综合贡献量和对螺纹钢抗拉强度综合贡献量。本发明所提供的方法,系统还原和描述了钒、氮元素影响螺纹钢强度的原理,可有效提高对螺纹钢强度判断的准确度,能提高钢种成分设计、螺纹钢性能调整等工作的成功率。