一种基于非线性FCE的INS/USBL组合导航系统性能评估方法

    公开(公告)号:CN109934484A

    公开(公告)日:2019-06-25

    申请号:CN201910176340.2

    申请日:2019-03-08

    Abstract: 本发明属于卫星导航领域,具体涉及一种基于非线性FCE的INS/USBL组合导航系统性能评估方法,包括下列步骤:建立INS/USBL组合导航系统指标体系以及评语等级;计算基于隶属度函数的评判矩阵;计算组合导航系统权值向量C;综合评判及归一化;计算评估等级区间量化值。本发明利用非线性FCE对INS/USBL组合导航系统开展性能评估,并设计了INS/USBL组合导航系统三层次指标体系,从器件级误差对组合导航系统性能评估,并设计了基于非线性模糊算子的非线性FCE,该方法能够科学的定量评估INS/USBL组合导航系统。

    一种动态环境下四陀螺冗余式捷联惯导系统硬故障检测与隔离方法

    公开(公告)号:CN110196049A

    公开(公告)日:2019-09-03

    申请号:CN201910449206.5

    申请日:2019-05-28

    Abstract: 本发明公开了一种动态环境下四陀螺冗余式捷联惯导系统硬故障检测与隔离的方法,属于捷联惯导系统领域技术领域。本发明利用冗余式惯性导航系统惯性器件输出数据建立惯性器件误差模型,设计了一种基于广义似然比、卡尔曼滤波与线性估计思想相结合的故障检测与隔离方法,对发生硬故障的惯导系统进行检测;利用线性估计方法处理数据,得到故障时刻惯性器件预测值,并比较每组惯性器件预测值与输出值差值,定位并隔离故障惯性器件。本发明可在动态环境下四陀螺冗余式捷联惯导系统单个惯性器件发生硬故障时,保障捷联惯导系统的可靠性。

    一种四冗余双轴旋转调制捷联惯性导航系统及导航方法

    公开(公告)号:CN107202576A

    公开(公告)日:2017-09-26

    申请号:CN201710356791.5

    申请日:2017-05-19

    Abstract: 一种四冗余双轴旋转调制捷联惯性导航系统,包括:安装结构、惯性测量组件、双轴旋转机构;安装结构,包括:四面体框架、三个L型支撑脚;四面体框架包括三个斜面和一个底面;四面体框架的每个平面均有三个安装基准脚;每个安装基准脚有两个安装基准脚螺纹孔;四面体框架关于三条梁对称,并为空心结构;L型支撑脚有三角凹槽,三角凹槽中心攻有螺纹;L型支撑脚底面有两个底面螺纹孔;惯性测量组件为由一个陀螺仪、一个加速度计和辅助元器件集成的电路板,电路板上有安装孔;四套惯性测量组件通过与安装基准脚连接装配于四面体框架的四个安装面,通过支撑脚固定于安装结构的底座;双轴旋转机构与安装结构固连。

    一种基于五面体的对称斜置配置方法

    公开(公告)号:CN104501810A

    公开(公告)日:2015-04-08

    申请号:CN201510028500.0

    申请日:2015-01-21

    CPC classification number: G01C21/16

    Abstract: 本发明涉及惯性导航技术领域,特别涉及一种基于五面体的对称斜置配置方法。四个惯性组件测量轴方向相对于正交坐标系斜置,且方向与五面体的四个侧面相垂直,每个惯性组件包括一个陀螺和一个加速度计,两者的测量轴方向保持一致;五面体的四个侧面与底面的夹角均为54.74°,侧面为等边三角形,底面为正方形,正交坐标系原点为五面体底面的中心。本发明专利一种基于五面体的对称斜置配置方法,配置方案中的四个惯性组件以对称式分布,且均相对正交坐标系斜置,当惯性组件中任意一个发生单故障时,系统的测量精度不会随故障的惯性组件变化而变化。

    一种孤岛式微电网电压和频率的自适应牵制控制方法

    公开(公告)号:CN110768289B

    公开(公告)日:2023-09-19

    申请号:CN201910934429.0

    申请日:2019-09-29

    Abstract: 本发明提供一种孤岛式微电网电压和频率的自适应牵制控制方法,构造多分布式发电机的孤岛式微电网系统;采用通用下垂方程构造孤岛式微电网中电压和频率的更新方程;采用牵制控制方法为微电网中部分分布式发电机提供参考值;采用自适应控制方法,通过构造每一个分布式电压、频率的估计值以及线路阻抗估计值公式,得到精确的电压和频率输出;本发明将自适应控制方法与牵制控制方法进行有效地设计结合,可以在系统具有多个分布式发电机的情况下高效的控制系统工作,并保证系统在不同线阻抗的电路中工作时,无需调整参数便能够提供精确的电压和频率输出,从而提供可靠、精确的电压和频率输出为外部系统供电。

    一种针对极区传递对准动态挠曲杆臂效应的模型补偿方法

    公开(公告)号:CN109724626A

    公开(公告)日:2019-05-07

    申请号:CN201910176379.4

    申请日:2019-03-08

    Abstract: 本发明属于惯导系统的传递对准技术领域,具体涉及一种针对极区传递对准动态挠曲杆臂效应的模型补偿方法。综合考虑载体形变导致的挠曲变形角对静态固定杆臂的影响,结合了格网导航误差方程,特别设计了一种在极区格网坐标系下传递对准杆臂效应的模型,并且采用“速度+姿态”快速对准的匹配方式,利用卡尔曼滤波进行解算,估计出子惯导系统的姿态失准角和速度误差值,补偿子惯导,完成传递对准。本发明方法有效地解决了极区环境下挠曲变形与杆臂效应的耦合影响,提高了极区的传递对准精度和适用性。

    一种冗余式惯性测量单元实验室标定方法

    公开(公告)号:CN110887505A

    公开(公告)日:2020-03-17

    申请号:CN201910934423.3

    申请日:2019-09-29

    Abstract: 本发明提供一种冗余式惯性测量单元实验室标定方法,采用圆锥描述方案建立安装角模型,并得到载体角速率与每一个陀螺仪测量角速率的关系;根据传感器与载体坐标系的关系建立通用的惯性测量单元的标定模型;建立滤波器的状态方程和量测方程;根据量测方程对量测量进行行扩增,得到行扩增后的量测方程,使得系统可观测性提升;根据扩增后的量测方程求得雅可比矩阵和黑塞矩阵,并采用基于二阶泰勒展开的扩展卡尔曼滤波算法估计误差参数,得到精确的传感器零偏、标度因数误差和安装误差;本发明估计精度高、通用性强、实验过程简单、能同时估计出零偏、标度因数误差和安装误差三种误差等优点,能够有效提高惯性测量单元精度,具有很好的工程应用价值。

    一种冗余式捷联惯导系统多故障隔离方法

    公开(公告)号:CN107421534B

    公开(公告)日:2020-02-14

    申请号:CN201710280247.7

    申请日:2017-04-26

    Abstract: 本发明公开了一种冗余式捷联惯导系统多故障隔离方法。该方法首先采集冗余式惯性导航系统惯性器件输出数据,利用广义似然比方法进行故障检测,检测得到冗余式捷联惯导系统发生故障时,利用线性估计方法估计得到故障时刻惯性器件输出的预测值,最后比较惯性器件预测值与输出值差值,定位故障惯性器件,并隔离故障惯性器件。该方法将广义似然比方法与线性估计方法相结合,充分利用广义似然比方法灵敏度高、便于实现,以及线性估计方法计算量小、准确性高等特点,在冗余式惯性导航系统多个惯性器件同时发生故障时,及时并准确隔离故障惯性器件,保障惯导系统的可靠性。

    一种六陀螺冗余式捷联惯导系统双故障隔离方法

    公开(公告)号:CN109813309A

    公开(公告)日:2019-05-28

    申请号:CN201910176361.4

    申请日:2019-03-08

    Abstract: 本发明属于惯导系统领域,具体涉及一种六陀螺冗余式捷联惯导系统双故障隔离方法,包括以下步骤:采集冗余式捷联惯导系统惯性器件输出数据,得到不同时刻陀螺仪和加速度计的输出值;采用广义似然比故障检测方法进行故障检测,若发生故障,记录故障时刻;采用基于极大似然估计的双故障隔离方法进行故障隔离;采用基于降阶奇偶向量的故障隔离方法进行故障隔离;确定故障信息矩阵R,依据系统重构公式进行系统重构;通过本发明提出的六陀螺冗余式系统故障双检测与隔离方法,可以准确地检测并隔离两个同时发生故障的惯性器件,保障了惯导系统的可靠性。因此,本发明可以更为全面地提升导航系统性能,满足导航系统长时间高可靠性实际应用需求。

    基于激光测距和MEMS/GPS的目标导航测绘误差角估计方法

    公开(公告)号:CN104101881B

    公开(公告)日:2016-06-29

    申请号:CN201410352970.8

    申请日:2014-07-23

    Abstract: 本发明公开了一种基于激光测距和MEMS/GPS组合导航系统的目标导航测绘误差角估计方法。根据MEMS/GPS组合导航系统测出观测点的位置、姿态,通过激光测距仪测出观测点距目标的斜距;基于测量值计算出参考点的三维坐标、相对位置误差,进而构造参考点的观测方程。获取2个外部参考点的位置姿态信息,即估计出姿态误差角和安装失准角。该方法可充分利用多次观测信息,有效解决传统方法中误差不可观测的问题,利用外部参考点信息对安装失准角及姿态误差角进行精确估计与补偿,有效提升目标的导航测绘精度。

Patent Agency Ranking