一种火箭子级姿态翻转着陆在线制导方法

    公开(公告)号:CN114721261B

    公开(公告)日:2025-03-25

    申请号:CN202210247585.1

    申请日:2022-03-14

    Abstract: 本发明提供了一种火箭子级姿态翻转着陆在线制导方法,包括:S1,建立火箭末级六自由度着陆动力学模型;S2,构建满足约束条件的火箭末级六自由度动力软着陆轨迹优化模型;S3,将S2轨迹优化模型中的非凸约束通过线性化方式转化为凸约束,得到凸形式的轨迹优化模型;S4,将S3中凸形式的轨迹优化模型进行离散化处理;S5,对S3中的线性化动力学方程添加动力学松弛变量;S6,设计信赖域约束限制参考轨迹的变化范围;S7,确定初始迭代参考轨迹;S8,求解离散凸化模型;S9,重复S8迭代求解使轨迹收敛到最优轨迹,完成一个制导周期采样点的轨迹优化;S10,利用轨迹优化结果更新最优指令,并直接用作制导信号,最终完成火箭子级姿态翻转着陆在线制导。

    一种火箭子级姿态翻转着陆在线制导方法

    公开(公告)号:CN114721261A

    公开(公告)日:2022-07-08

    申请号:CN202210247585.1

    申请日:2022-03-14

    Abstract: 本发明提供了一种火箭子级姿态翻转着陆在线制导方法,包括:S1,建立火箭末级六自由度着陆动力学模型;S2,构建满足约束条件的火箭末级六自由度动力软着陆轨迹优化模型;S3,将S2轨迹优化模型中的非凸约束通过线性化方式转化为凸约束,得到凸形式的轨迹优化模型;S4,将S3中凸形式的轨迹优化模型进行离散化处理;S5,对S3中的线性化动力学方程添加动力学松弛变量;S6,设计信赖域约束限制参考轨迹的变化范围;S7,确定初始迭代参考轨迹;S8,求解离散凸化模型;S9,重复S8迭代求解使轨迹收敛到最优轨迹,完成一个制导周期采样点的轨迹优化;S10,利用轨迹优化结果更新最优指令,并直接用作制导信号,最终完成火箭子级姿态翻转着陆在线制导。

    一种运载火箭电磁发射系统和方法

    公开(公告)号:CN109297356B

    公开(公告)日:2021-02-09

    申请号:CN201811303364.1

    申请日:2018-11-02

    Abstract: 本发明公开了一种运载火箭电磁发射系统和方法,该系统包括:脉冲发电机电源,用于接收电磁发射系统所需的电能并储存,以及,在脉冲发电机电源释放储存的电能时,通过整流电路和逆变电路对释放的电能进行整流处理,输出工作电流;悬浮直线感应电机,用于接收脉冲发电机电源输出的工作电流,对工作电流进行电能转换,向运载火箭提供发射时所需的初始动能;吸引型轨道控制器,用于在检测到悬浮直线感应电机的母线电压突变时,根据预置功率补偿控制策略,抑制母线电压突变,以确保运载火箭分离过程中悬浮直线感应电机的稳态运行。本发明通过电‑磁之间的能量转换为运载火箭的发射提供初始飞行速度,提高了运载火箭发射效率,降低了发射成本。

    一种运载火箭电磁发射系统和方法

    公开(公告)号:CN109297356A

    公开(公告)日:2019-02-01

    申请号:CN201811303364.1

    申请日:2018-11-02

    Abstract: 本发明公开了一种运载火箭电磁发射系统和方法,该系统包括:脉冲发电机电源,用于接收电磁发射系统所需的电能并储存,以及,在脉冲发电机电源释放储存的电能时,通过整流电路和逆变电路对释放的电能进行整流处理,输出工作电流;悬浮直线感应电机,用于接收脉冲发电机电源输出的工作电流,对工作电流进行电能转换,向运载火箭提供发射时所需的初始动能;吸引型轨道控制器,用于在检测到悬浮直线感应电机的母线电压突变时,根据预置功率补偿控制策略,抑制母线电压突变,以确保运载火箭分离过程中悬浮直线感应电机的稳态运行。本发明通过电-磁之间的能量转换为运载火箭的发射提供初始飞行速度,提高了运载火箭发射效率,降低了发射成本。

    一种运载火箭垂直返回弹道设计方法

    公开(公告)号:CN106021628A

    公开(公告)日:2016-10-12

    申请号:CN201510389150.0

    申请日:2015-07-03

    Abstract: 本发明提出了一种运载火箭一子级垂直返回弹道设计方法,根据运载火箭一子级飞行特点确定垂直返回发射点或者垂直返回预定目标位置的各子飞行段,采用一子级垂直返回过程在地球圆球模型的三自由度动力学模型,生成垂直返回弹道轨迹,所述各子飞行段从一子级分离开始至一子级着陆依次包括调姿段、减速转弯段、滑行段、动力减速段、气动减速段、垂直下降段或滑行调姿段、动力减速段、气动减速段和垂直下降段,所述动力学模型由飞行速度、弹道倾角、弹道偏角、发射坐标系下的速度和位置分量、攻角、侧滑角、变推力因子确定。本发明还提出了运载火箭助推级和运载火箭垂直返回弹道设计方法。本发明提出的垂直返回弹道设计方法操作简单,易于工程实现,所得的各子飞行段的轨迹指标满足热流峰值、动压、飞行过载及终端位置等约束要求。

    一种运载火箭助推段制导与控制方法及装置

    公开(公告)号:CN116499318A

    公开(公告)日:2023-07-28

    申请号:CN202211074703.X

    申请日:2022-08-31

    Abstract: 一种运载火箭助推段制导与控制方法及装置,包括以下步骤及相应模块:(1)获取助推飞行段的期望轨迹,设置相关参数;(2)若当前时刻是否到达助推段最大飞行时间,则控制过程结束;否则进入步骤(3);(3)获取当前时刻运载火箭气动参数、箭体参数、振动参数;(4)计算当前时刻运载火箭受到的气动升力、侧向力、阻力、弹性振动干扰观测矢量、发动机控制推力、指令姿态角、指令角速度矢量、控制力矩矢量;(5)计算下一时刻的伪速度矢量观测值、干扰角加速度观测值、弹性振动干扰观测过程变量、角速度观测矢量;(6)输出当前时刻发动机控制推力和控制力矩矢量,用于实施控制,然后返回步骤(2)。

    一种两级VTVL运载火箭点对点运输全程弹道设计方法

    公开(公告)号:CN115828416A

    公开(公告)日:2023-03-21

    申请号:CN202211429923.X

    申请日:2022-11-15

    Abstract: 本发明公开了一种两级VTVL运载火箭点对点运输全程弹道设计方法,包括:以交接班条件作为动力上升段弹道的终端约束,确定动力上升段弹道,并通过动力上升段弹道优化得到满足该终端约束下的最大有效载荷质量;设置无动力返回段飞行约束条件;根据飞行约束条件得到攻角剖面上边界和攻角剖面下边界;根据攻角剖面上边界、攻角剖面下边界和动力上升段弹道得到全程弹道的最远航程Smax;判断全程弹道的最远航程Smax与目标航程Starget是否满足0≤Smax‑Starget≤ε,若满足则根据攻角剖面上边界、攻角剖面下边界、交接班条件和最大有效载荷质量确定无动力返回段弹道,得到具有最大运载能力的全程弹道;若不满足则修改交接班条件,迭代优化全程弹道。本发明能得到最大运载能力的最优全程弹道。

Patent Agency Ranking