-
公开(公告)号:CN104987060A
公开(公告)日:2015-10-21
申请号:CN201510344609.5
申请日:2015-06-18
Applicant: 桂林电子科技大学
IPC: C04B35/453 , C04B35/622
Abstract: 本发明公开了一种具有骨架网络结构的氧化锌蒸镀靶材的制备方法:高温烧制获得微米级粉体,加入纳米级粉体、碎颗粒、氢氧化物浆料中的一种或者多种混合,再加入粘接剂压制成型,高温烧结后得到蒸镀靶材。本发明通过构建具有三维骨架网络的结构,实现对低密度蒸发材料的结构强化,所制备的氧化锌蒸镀材料具有较高的强度,抗热冲击性能好,彻底解决高能电子束轰击时开裂的问题。
-
公开(公告)号:CN104891989A
公开(公告)日:2015-09-09
申请号:CN201510244734.9
申请日:2015-05-14
Applicant: 桂林电子科技大学
IPC: C04B35/475 , C04B35/622
Abstract: 本发明涉及一种Srx(Bi0.47Na0.47Ba0.06)1-xMxTi1-xO3高储能密度陶瓷及其制备方法,制备方法采用放电等离子烧结(SPS)技术制备Srx(Bi0.47Na0.47Ba0.06)1-xMxTi1-xO3高储能密度陶瓷,其中:0.05≤x≤0.3,M为Sn、Zr、(Mg1/3Nb2/3)、(Mg1/3Ta2/3)、(Zn1/3Nb2/3)、(Zn1/3Ta2/3)、(Ni1/3Nb2/3)、(Ni1/3Ta2/3)、(Al1/2Nb1/2)、(Al1/2Ta1/2)、(Co1/2Nb1/2)、(Co1/2Ta1/2)、(Cr1/2Nb1/2)、(Cr1/2Ta1/2)中的一种。本发明制备的高储能密度陶瓷,基于电滞回线计算的储能密度可达0.9~2.4?J/cm3,可承受最高交流电压介于115~210?kV/cm之间。
-
公开(公告)号:CN104710174A
公开(公告)日:2015-06-17
申请号:CN201510104203.X
申请日:2015-03-10
Applicant: 桂林电子科技大学
IPC: C04B35/475 , C04B35/622 , C04B35/64
Abstract: 本发明公开了一种高压电、高储能密度无铅陶瓷介质材料,成分以通式(0.95-x-y-z)Bi0.5Na0.5TiO3–xBi0.5K0.5 TiO3–yBa0.65Sr0.35Ti-O3–zK0.5Na0.5NbO3 –0.05LiTaO3来表示,其中x、y、z表示摩尔分数,0.002≤x≤0.3,0.002≤y≤0.2,0.001≤z≤0.3。本发明采用放电等离子烧结,可在低烧结温度下获得均匀致密的陶瓷组织。本发明的压电、高储能密度陶瓷具有优异的储能密度、储能效率及高压电常数,储能密度可达1.75J/cm3,储能效率可达65%,压电常数d33可达682pm/V、实用性好。
-
公开(公告)号:CN102585762B
公开(公告)日:2013-12-25
申请号:CN201210031373.6
申请日:2012-02-13
Applicant: 桂林电子科技大学
IPC: C09K3/00
Abstract: 本发明公开了一种电气石基空气负离子与电磁屏蔽功能基元材料及其制备方法,具体步骤是:1、将硝酸铁溶液与电气石超细粉混合、烘干、煅烧得电气石表面包覆纳米α-Fe2O3\TiO2核壳结构复合粉体;2、把α-Fe2O3\TiO2复合粉体与氧化钛溶胶混合、烘干、煅烧得到电气石表面包覆α-Fe2O3\TiO2双层核壳结构纳米复合粉体;3、进一步把步骤2的产品在氩气或氮气的气氛炉中煅烧,得到电气石表面包覆Fe3O4\TiO2核壳结构纳米复合粉体;4、将步骤3所得产品经球磨后即得到电气石基空气负离子与电磁屏蔽功能基元材料。本发明产品产生的负离子浓度高,电磁屏蔽能力强,且制备工艺简单,原材料成本低。
-
公开(公告)号:CN103236497A
公开(公告)日:2013-08-07
申请号:CN201310145707.7
申请日:2013-04-25
Applicant: 桂林电子科技大学
IPC: H01L45/00
Abstract: 本发明公开了一种基于钛酸铋材料的阻变存储器及其制备方法。阻变存储介质层为Bi4Ti3O12及其掺杂物,掺杂元素包括Nb、Ta、La、Sr、V、Nd、Ce、Sm、Ca和Pr,阻变介质层为薄膜形态。器件结构为衬底/下电极/阻变介质层/上电极,上、下电极材料为导电氧化物或金属,上、下电极的厚度为80nm到500nm,阻变介质层厚度为10nm到1000nm。整个存储器的制备使用磁控溅射方法。本发明的有益效果在于采用钛酸铋作为存储介质的阻变存储器具有较大的高低电阻比,有利于数字信息0和1的区分,降低了数据的写入和读取的误判。
-
公开(公告)号:CN103014686A
公开(公告)日:2013-04-03
申请号:CN201210518916.7
申请日:2012-12-06
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种Mn-Zn氧化物电致阻变薄膜及其非对称透光阻变电容的制备方法,包括以镀有透明导电氧化物薄膜的玻璃为衬底,采用化学溶液沉积(CSD)工艺方法制备Mn-Zn氧化物电致阻变薄膜,采用直流磁控溅射工艺方法制备金属薄膜上电极并获得相应的非对称透光阻变电容。本发明的优点是:(1)薄膜的组分控制精确,而且易于调整(掺杂)组分,能够大面积制膜,成本低;(2)采用多次旋涂,分层预热的工艺方案,可提高结晶度,减少薄膜内应力,提高薄膜的性能,特别是具有较高的高/低电阻比值和较低的设置电压及复位电压;(3)所制备的薄膜为非对称结构电容,可大大提高电致阻变薄膜的抗疲劳特性,并可应用于透明电子领域。
-
公开(公告)号:CN102255045A
公开(公告)日:2011-11-23
申请号:CN201110224038.3
申请日:2011-09-20
Applicant: 桂林电子科技大学
IPC: H01L45/00
Abstract: 本发明公开了一种MgxZn1-xO电致阻变薄膜及其非对称结构异质结的制备方法,它是以镀有ITO、AZO等透明导电氧化物薄膜的玻璃为衬底;将配制好的MgxZn1-xO溶胶滴到衬底上,再进行匀胶,制作湿膜,并进行低温烘干处理;将烘干处理过的薄膜进行预热处理;直至获得所需厚度的MgxZn1-xO薄膜;对上述MgxZn1-xO薄膜进行退火处理,使薄膜晶化;样品自然冷却后即可获得MgxZn1-xO电致阻变薄膜;再在薄膜表面上采用直流磁控溅射工艺制备金属上电极薄膜,获得“金属薄膜/MgxZn1-xO/透明导电氧化物薄膜”非对称结构异质结。本发明的优点是:(1)能够大面积制膜,成本低;(2)具有较高的高/低电阻比值和较低的设置电压及复位电压;(3)可大大提高电致阻变薄膜的抗疲劳特性,并可应用于透明电子领域。
-
公开(公告)号:CN119698225A
公开(公告)日:2025-03-25
申请号:CN202411765600.7
申请日:2024-12-04
Applicant: 桂林电子科技大学
IPC: H10N30/097 , C04B35/475 , C04B35/622 , C04B35/80 , H10N30/853 , H10N30/50 , B82Y30/00 , B82Y40/00
Abstract: 本发明涉及陶瓷材料技术领域,具体涉及一种一体化非对称三明治结构无铅压电陶瓷及其制备方法,本发明制备的一体化非对称三明治结构无铅压电陶瓷材料为1‑3复合、0‑3复合及2‑2层状复合的多种复合结构非对称三明治结构,这种复合结构同时产生界面扩散梯度组成与梯度结构,有效提高力学性能和压电性能及温度稳定性。产品经实验测量,同时具有非常优异的断裂韧性,压电性能及宽温区稳定性,断裂韧性KIC=4.1MPa·m1/2,压电常数d33=206pC/N,在25‑262℃的温度范围内△d33/d33低于10%,性能稳定,成本低廉,适合大规模工业生产,从而解决了现有的陶瓷材料力学性能和压电性能不能兼顾,温度稳定性较差的问题。
-
公开(公告)号:CN119430915A
公开(公告)日:2025-02-14
申请号:CN202411646776.0
申请日:2024-11-18
Applicant: 桂林电子科技大学
IPC: C04B35/475 , C04B35/622 , C04B35/645 , C04B35/80
Abstract: 本发明涉及无铅压电陶瓷材料技术领域,具体涉及一种具有汉堡结构的无铅压电陶瓷及其制备方法,包括下层、中层和上层,上层和下层的组成是1‑3复合型0.82(Bi0.5Na0.5)0.85Ba0.15TiO3/0.28CBN纤维,中层为(Bi0.5Na0.5)0.93Ba0.07TiO3陶瓷;结合外加陶瓷块施加重力辅助烧结制备,形成0‑3复合及2‑2层状复合的汉堡结构,同时产生界面扩散梯度组成与梯度结构。产品经实验测量,同时具有非常优异的功能特性、热稳定性和力学性能,压电常数可达d33=220pC/N,退极化温度Td=275℃,维氏硬度HV=9.85GPa,断裂韧性KIC=4.5MPa·m1/2,性能稳定,成本低廉,适合大规模工业生产。
-
公开(公告)号:CN114933415B
公开(公告)日:2023-07-11
申请号:CN202110687186.2
申请日:2021-06-21
Applicant: 桂林电子科技大学
Abstract: 本发明涉及电介质储能材料,特别涉及一种高储能高温稳定性的微晶玻璃介质材料及其制备方法,制备的微晶玻璃介质材料的化学组分为:x(A4X2Z4Nb10O30)‑y(aP2O5‑bB2O3‑cAl2O3)‑zMmOn;所得的微晶玻璃材料的实测放电储能密度可达7.36J/cm3@1100kV/cm,峰值功率密度可达2282MW/cm3;在400kV/cm的场强下,其场致应变为0,实测放电储能密度1.00‑1.50J/cm3,在25‑100℃的温度区间内实现至少300圈充放电循环,而性能没有劣化;同时玻璃组成中无铅,达到了环保的目的。
-
-
-
-
-
-
-
-
-