-
公开(公告)号:CN110589762B
公开(公告)日:2023-03-24
申请号:CN201911012895.X
申请日:2019-11-20
Applicant: 桂林电子科技大学
Abstract: 本发明公开了Al‑BiOI铝基复合制氢材料,将铋盐和碘化物分别溶解得到溶液X,Y,然后将X,Y溶液混合搅拌均匀,然后进行水热反应得到BiOI;将铝粉与所得的BiOI材料球磨制成,Al‑BiOI复合材料中BiOI的掺杂量为10%‑20%。其制备方法包括以下步骤:1)BiOI材料的制备;2)Al‑BiOI铝基复合制氢材料的制备。作为水解制氢材料的应用,单位质量的产氢量为988‑1101 mL/g、产氢速率为875‑4545 mL/g min及产氢率为81‑95%。本发明具有以下优点:1、在中性溶液和室温的条件下,具有高产氢性能;2、BiOI合成步骤简单,价格低廉,反应产物对环境友好;3、放氢效率高,转化率高,放氢时间短,利于实际使用生产。因此,本发明制作过程简单,原料成本价格低且产物无污染,制氢效率高,可为燃料电池提供稳定氢源。
-
公开(公告)号:CN113871212B
公开(公告)日:2022-12-27
申请号:CN202111200907.9
申请日:2021-11-29
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种具有核壳结构的二氧化锰/碳膜复合材料,通过静电纺丝制备聚丙烯腈膜,通过高温碳化制备聚丙烯腈碳膜,在高锰酸钾溶液中淬火处理获得快速生长的MnO2纳米片,得到核壳结构;所述壳核结构由碳纤维为核,MnO2纳米片阵列为壳。其制备方法包括以下步骤:1)聚丙烯腈膜的制备;2)聚丙烯腈碳膜的制备;3)高钾含量水钠锰矿/碳膜复合材料的制备。作为超级电容器电极材料的应用,在0–1.3 V范围内充放电,在电流密度为4 mA cm–2时,比容量达到了700‑800 mF cm–2。本发明使用KMnO4作为前驱体溶液,通过淬火处理,不仅可以原位捕获KMnO4溶液中的钾离子,省去钾离子的预嵌入过程,大幅提高材料的比电容;有利于工业大规模生产制备,实现柔性器件的开发。
-
公开(公告)号:CN115410831A
公开(公告)日:2022-11-29
申请号:CN202211112489.2
申请日:2022-09-14
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种NiMo‑LDH@Co‑ZIF‑67多孔核壳结构复合材料,以六水硝酸钴和二甲基咪唑为起始原料制备Co‑ZIF‑67,再以六水硝酸镍、二水钼酸钠、Co‑ZIF‑67和尿素为原料,经一步水热法制得NiMo‑LDH@Co‑ZIF‑67多孔核壳结构复合材料;Co‑ZIF‑67为椭圆片状空心结构的核结构;NiMo‑LDH@Co‑ZIF‑67为多孔核壳结构的壳结构。其比表面积为180‑210 m2 g‑1,孔径分布为3‑4 nm。其制备方法包括:1,Co‑ZIF‑67的制备;2,NiMo‑LDH@Co‑ZIF‑67多孔核壳结构复合材料的制备。作为超级电容器电极材料,在0‑0.5 V,电流密度为1 A g‑1时充放电,比电容为1500‑2000 F g‑1;在电流密度为10 A g‑1,5000圈循环,保留初始比电容的85‑90%。
-
公开(公告)号:CN111774574B
公开(公告)日:2022-08-30
申请号:CN202010695467.8
申请日:2020-07-20
Applicant: 桂林电子科技大学
Abstract: 本发明公开了Al‑含Bi化合物多孔块体制氢材料,即将原料Al粉和含Bi化合物进行球磨混合,再经放电等离子烧结制成;其含Bi化合物必须满足在球磨过程中不与Al粉反应和在放电等离子烧结过程会发生反应产生气体,使复合制氢材料形成多孔形貌。所述Bi化合物为Bi2O2CO3,Bi2O2CO3在放电等离子烧结过程会产生二氧化碳气体。其制备方法包括以下步骤:1)球磨过程;2)放电等离子烧结过程。作为水解制氢材料的应用,与水反应产氢量为1070‑1200 mL·g‑1,其产氢率可达93‑95%,该材料与水反应的表观活化能为29‑30 KJ·mol‑1。本发明具有以下优点:1、在放电等离子烧结过程中生成气体,复合材料中形成的孔洞增大了材料与水的接触面积;2、生成Bi和Bi2O3,提高复合材料的产氢性能。
-
公开(公告)号:CN114713230A
公开(公告)日:2022-07-08
申请号:CN202210598396.9
申请日:2022-05-30
Applicant: 桂林电子科技大学
IPC: B01J23/755 , B01J35/10 , C01B3/06
Abstract: 本发明公开了一种Co/Ni比为3:1的羧基化CNTs负载CoNiB复合材料,以羧基化CNTs、六水氯化钴、六水氯化镍、三乙胺、无水乙醇、水和硼氢化钠为原料,采用在冰水条件下硼氢化钠原位还原的方法,其中三乙胺起到将金属预锚定于羧基化CNTs的作用,其中,所述六水氯化钴和六水氯化镍的质量比为3:1;所得材料的微观形貌为,CoNiB生长在羧基化CNTs表面,羧基化CNTs贯穿于整个复合材料之中;其表面积为70‑120 m2 g‑1,孔径分布为3‑5 nm和30‑35 nm。作为催化硼氢化钠水解产氢催化剂的应用,在298 k条件下提供的产氢速率达到6100‑6500 ml min‑1 gcatalyst‑1,产氢量为理论值的100%,催化产氢的活化能为Ea=27‑29 kJ mol‑1;循环10次后的产氢速率为初始产氢速率的70‑75%。
-
公开(公告)号:CN114672845A
公开(公告)日:2022-06-28
申请号:CN202210447553.6
申请日:2022-04-27
Applicant: 桂林电子科技大学
IPC: C25B11/091 , C25B1/04 , B82Y40/00 , B82Y30/00
Abstract: 本发明公开了一种基于碳纳米纤维金属硫化物自支撑复合材料,以聚丙烯腈、多巴胺、乙酸钴、钼酸钠、硫代乙酰胺和丁烷四羧酸为原料,利用纤维上的羟基和1,2,3,4‑丁烷四羧酸上的羧基之间以及钴钼离子与羧基之间的异性相吸的原理,先采用预氧化和碳化结合的方法制备碳纳米纤维,再通过一步水热法,在碳纳米纤维表面生长纳米花状结构的二硫化钴和三硫化二钼。所述碳纳米纤维为骨架结构;所述二硫化钴和三硫化二钼为导电层;所述二硫化钴和三硫化二钼形成纳米片‑球簇‑包覆三级结构。作为析氢催化剂材料的应用,过电势为105.2 mV达到电流密度为10 mA cm‑2,塔菲尔斜率为152.83 mV dec‑1,电流保持率为94.53%。
-
公开(公告)号:CN113511629B
公开(公告)日:2022-06-17
申请号:CN202110493380.7
申请日:2021-05-07
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种含Bi和Mo的镁基粉体复合制氢材料,将可溶性Bi盐与可溶性Mo酸盐通过水热法制备得Bi/Mo化合物,再将原料Mg粉与Bi/Mo化合物进行球磨混合,所述Bi/Mo化合物必须同时满足以下两个特点,一是纳米级晶体,二是在球磨过程中,含Bi化合物纳米级晶体不与Mg粉反应,且均匀附着于Mg粉上;所述Bi/Mo化合物为Bi2MoO6,Bi/Mo化合物的尺寸为1‑5μm,Bi/Mo化合物由尺寸为100‑200 nm的纳米级晶体组成。其制备方法包括以下步骤:1)含Bi化合物的制备;2)含Bi和Mo的镁基粉体复合制氢材料的制备。作为水解制氢材料的应用,反应产氢量为801.4‑859.2 mLg‑1,产氢率可达91.9‑98.9%,表观活化能为34‑35 KJ·mol‑1。本发明具有以下优点:纳米级颗粒均匀附着于Mg颗粒表面,提供活性位点;具有良好的抗氧化性能。
-
公开(公告)号:CN113539699A
公开(公告)日:2021-10-22
申请号:CN202110813165.0
申请日:2021-07-19
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种ACNFs@Ni‑Mn‑P纳米片阵列复合材料,以聚丙烯腈、N,N‑二甲基甲酰胺、四水合乙酸锰、四水合乙酸镍、尿素、氟化铵、次磷酸钠为起始原料,首先通过静电纺丝法制备碳纳米纤维前驱体,再经低温预碳化,高温碳化和活化得到活性碳纳米纤维,最后经水热反应和煅烧制得;整体直径为6‑7μm;Ni‑Mn‑P纳米片厚度为30‑40nm且表面粗糙。其制备方法,包括以下步骤:碳纳米纤维前驱体的制备;活性碳纳米纤维的制备与活化;ACNFs@Ni‑Mn‑OH和ACNFs@Ni‑Mn‑P的制备。作为超级电容器电极材料的应用,在0‑0.45 V范围内充放电,在放电电流密度为1 A g‑1时,比电容可以达到1000‑1100 F g‑1;在放电电流密度为10A g‑1时,在5000圈循环后的循环稳定性为88.53%,库伦效率为100%。
-
公开(公告)号:CN112844427A
公开(公告)日:2021-05-28
申请号:CN202110241316.X
申请日:2021-03-04
Applicant: 桂林电子科技大学
IPC: B01J27/185 , B01J35/10 , B01J37/34 , B01J37/16 , C01B32/198 , C01B32/194 , C01B3/04
Abstract: 本发明公开了一种Co‑B‑P‑O纳米粒子负载还原氧化石墨烯复合材料,通过改进的Hummers的方法得到氧化石墨烯材料,然后通过化学原位还原的方法将Co‑B‑P‑O负载到还原氧化石墨烯上,得到Co‑B‑P‑O纳米粒子负载还原氧化石墨烯复合材料,其比表面积为62‑120 m2g‑1,孔径分布为12‑14 nm。其制备方法包括以下步骤:1,氧化石墨烯纳米片载体的制备;2,Co‑B‑P‑O纳米粒子负载还原氧化石墨烯复合材料的制备。作为硼氢化钠水解催化剂的应用,在298 K下提供的最大放氢速率达到9036.3 mL•min‑1g‑1,放氢量为理论值的100%,催化放氢的活化能为Ea=28.64 kJ•mol‑1;10次循环使用后仍保留了其对硼氢化钠水解初始催化活性的88.9%。本发明具有高催化性能、高循环性能、工艺简单、反应周期短的特点。
-
公开(公告)号:CN108622896B
公开(公告)日:2021-04-13
申请号:CN201810486402.5
申请日:2018-05-21
Applicant: 桂林电子科技大学
IPC: C01B32/348 , C01B32/318 , H01G11/24 , H01G11/44 , H01M4/587
Abstract: 本发明公开了蛋清基多孔碳材料,由蛋清真空冷冻干燥后,经低温碳化,采用碱性无机物高温煅烧活化制备而成,比表面积其范围在2918~3921 m2 g−1,平均孔径分布均一,分布在1.32~3.596 nm范围内,且微孔含量超过85%。其制备方法包括步骤:1)蛋清的真空冷冻干燥;2)碳前驱体的活化;3)多孔碳材料的后处理。作为超级电容器电极材料的应用,当电流密度为0.5 A g−1时,比电容值范围在306~336 F g−1。本发明利用冷冻干燥技术,实现了提高其比表面积,调控孔径分布和微孔含量的目的。本发明在超级电容器、锂离子电池等领域具有广阔的应用前景。
-
-
-
-
-
-
-
-
-