一种氮、硅和磷三掺杂无金属碳基催化剂及其制备方法和应用

    公开(公告)号:CN118983450A

    公开(公告)日:2024-11-19

    申请号:CN202411058880.8

    申请日:2024-08-02

    IPC分类号: H01M4/90 H01M8/00

    摘要: 本发明涉及碳材料电催化领域,具体涉及一种氮、硅和磷三掺杂无金属碳基催化剂及其制备方法和应用。具体为:以酒糟、三聚氰胺和硅脂为原料,通过中温预碳化和高温碳化制备得到一种氮、硅和磷三掺杂无金属碳基催化剂,该催化剂具有优异的氧还原性能。与同类催化剂相比,本发明所使用的的原料和制备过程中不含任何金属,可以完全避免“芬顿反应”的出现,有利于提高催化的稳定性。本发明工艺简单,充分利用废弃酒糟,三聚氰胺,和硅脂作为初始原料,其来源丰富,价格低廉。本发明催化剂应用于氢燃料电池中的氧还原催化剂,具有优异的效果。

    一种基于第一性原理计算的MOFs储氢性能预测方法

    公开(公告)号:CN118824395A

    公开(公告)日:2024-10-22

    申请号:CN202410912366.X

    申请日:2024-07-09

    IPC分类号: G16C20/30 G16C20/70

    摘要: 本发明涉及一种基于第一性原理计算的MOFs储氢性能预测方法,由模型构建、计算模拟和结果分析3个部分组成,模型构建部分利用MOFs标准结构、备选元素与官能团和单个氢分子结构,构建MOFs初始结构、MOFs改性结构、MOFs氢吸附结构;计算模拟部分,包含结构优化计算、静态计算和电子性质计算;结果分析部分,包含计算模拟得到的稳态结构、稳态能量和电子性质的态密度信息。具体步骤包括:1,MOFs初始结构与改性结构建立;2,MOFs初始结构与改性结构计算模拟与结果分析;3,单氢分子MOFs氢吸附结构的建立;4,MOFs@1H2结构的计算模拟与结果分析;5,多氢分子MOFs氢吸附结构的建立、计算模拟和结果分析。筛选所得改性MOFs氢吸附结构可吸附8个氢分子。

    一种核壳微球状BMO/ZIF-8-S/PANI复合材料及其制备方法和应用

    公开(公告)号:CN118604056A

    公开(公告)日:2024-09-06

    申请号:CN202410775945.4

    申请日:2024-06-17

    摘要: 本发明公开了一种核壳微球状BMO/ZIF‑8‑S/PANI复合材料,由蛋黄壳结构的BMO、ZIF‑8‑S多面体和PANI复合而得,BMO经水热处理为蛋黄壳结构,BMO/ZIF‑8‑S为微球状,表面负载大小均匀的ZIF‑8‑S多面体,再在微球状BMO/ZIF‑8‑S外面包覆PANI,粒径尺寸为2.9‑3μm。其制备方法包括以下步骤:蛋黄壳结构的Bi2MoO6的制备;微球状BMO/ZIF‑8‑S的制备;PANI的包覆。一种基于BMO/ZIF‑8‑S/PANI传感器的制备方法,所得传感器对NH3响应率为200‑250%,响应时间为140‑150s,恢复时间为110‑120s;在湿度为0‑90%条件下,对NH3响应率为100‑570%。作为未知氨气浓度传感器的应用,包括以下步骤:首先进行标准浓度数据的获得;再进行未知浓度的测定。

    一种透明可拉伸性AgNWs-WPU薄膜及其制备方法和应用

    公开(公告)号:CN118185094A

    公开(公告)日:2024-06-14

    申请号:CN202410414076.2

    申请日:2024-04-08

    摘要: 本发明公开了一种透明可拉伸性AgNWs‑WPU薄膜,以水性聚氨酯WPU为基底材料,银纳米线AgNWs作为导电材料,通过物理浇注法制得;AgNWs‑WPU薄膜具有透明性,高拉伸性能和高导电性能;其微观结构为均一的三维网络结构,薄膜的阻抗为1.91‑2.0Ω;透明性为,具有透光性,并且,在500nm处的透光率69‑70%;高拉伸性能为,拉伸强度为43.4‑45.0MPa,断裂伸长率为210.5‑215.0%。其制备方法包括以下步骤:1,AgNWs‑WPU混合溶液的制备;2,AgNWs‑WPU薄膜的制备。作为超级电容器中电极材料的应用,当电流密度为0.1mA cm‑2时,比电容为595‑600mF cm‑2;当电流密度为2mA cm‑2,充放电循环次数为5000次的条件下,容量保持率为82‑85%,库仑效率为98‑99%。

    一种多孔球状Co-V-O及其制备方法和作为储氢催化剂的应用

    公开(公告)号:CN118145714A

    公开(公告)日:2024-06-07

    申请号:CN202410273910.0

    申请日:2024-03-11

    摘要: 本发明公开了一种多孔球状Co‑V‑O,以将乙酰丙酮钒、乙酰丙酮钴、乙二醇为原料,通过溶剂热反应和锻烧制得多孔球状Co‑V‑O;所得多孔球状Co‑V‑O为尺寸大小均一且结构稳定多孔球体,其微观形貌为多孔球状结构,尺寸为0.8‑1μm。其制备方法包括以下步骤:1,Co‑V‑O前体的制备;2,多孔球状Co‑V‑O的制备。一种基于Co‑V‑O的氢化镁复合储氢材料的制备方法,以MgH2和Co‑V‑O进行球磨,即可得到基于Co‑V‑O的氢化镁复合储氢材料,简称为Mg/CVO。所得Mg/CVO的起始脱氢温度为190℃;在脱氢温度为320℃,脱氢时间为300s的条件下,脱氢量为6.6‑6.7wt%;在10次循环后,氢容量保持率为91.5‑93%。

    一种非晶态NiCo-LDH/CC-C复合材料及其制备方法和应用

    公开(公告)号:CN117995566A

    公开(公告)日:2024-05-07

    申请号:CN202410240131.0

    申请日:2024-03-04

    摘要: 本发明公开了一种非晶态NiCo‑LDH/CC‑C复合材料,以硝酸镍、硝酸钴、碳布CC、羧基纤维素钠CMC为原料,以去离子水为溶剂,通过电沉积法制得NiCo‑LDH/CC‑C;所述NiCo‑LDH/CC‑C由NiCo‑LDH和CC复合而得,NiCo‑LDH为非晶态结构,微观形貌为纳米片状结构,厚度为10‑20nm,负载方向为垂直于CC表面且稳定负载于CC表面。其制备方法包括以下步骤:1,镍钴混合溶液的准备;2,NiCo‑LDH/CC‑C的制备。作为超级电容器电极材料的应用,在0‑0.5V范围内充放电,在放电电流密度为1A/g时,NiCo‑LDH/CC具有1500‑2100F g‑1的比电容;当质量负载为3.5‑4.2mg cm‑2时,在放电电流密度为2mA cm‑2时,面积比电容为6.4‑8.7F cm‑2。

    一种基于EG调控微观形貌的EG/DT-COF及其制备方法和应用

    公开(公告)号:CN117986510A

    公开(公告)日:2024-05-07

    申请号:CN202410149235.0

    申请日:2024-02-02

    IPC分类号: C08G12/08 H01G11/32 C08K7/24

    摘要: 本发明公开了一种基于EG调控微观形貌的EG/DT‑COF,以二氨基蒽醌、三甲酰基间苯三酚、膨胀石墨为原材料,以对甲苯磺酸为催化剂,以去离子水为润滑剂,使用物理研磨法制备复合共价有机骨架超级电容器负极材料;所述材料具有层状的多孔结构,其孔径大小在2‑50nm;所述材料在20‑450℃范围内具有稳定性,在445‑455℃开始分解。其制备方法包括以下步骤:1,膨胀石墨EG的制备;2,基于EG调控微观形貌的EG/DT‑COF的制备。作为超级电容器中负极材料的应用,在‑0.3‑‑1V范围内充放电,当电流密度为1A/g时,比电容为495‑501F/g;在10000次GCD循环后电容保持率为93‑94.4%。

    一种含钴氮掺杂多孔碳负载钌纳米粒子复合材料及其制备方法与应用

    公开(公告)号:CN117920308A

    公开(公告)日:2024-04-26

    申请号:CN202410086589.5

    申请日:2024-01-22

    摘要: 本发明公开了一种含钴氮掺杂多孔碳负载钌纳米粒子复合材料Ru‑Co‑NC,由含钴氮掺杂多孔碳Co‑NC和钌纳米粒子组成;Co‑NC由CoZn‑ZIF经高温煅烧制得,锌元素在高温煅烧过程中气化挥发;CoZn‑ZIF、Co‑NC、Ru‑Co‑NC均呈菱形十二面体形状,晶粒尺寸均为0.84μm;Ru纳米粒子晶粒尺寸为4.63nm,并且均匀分布在Co‑NC表面。其制备方法包括以下步骤:1,CoZn‑ZIF的制备;2,Co‑NC的制备;3,Ru‑Co‑NC的制备。作为氨硼烷水解制氢方面的催化应用,在25℃温度的条件下,水解率为90‑100%,完全放氢的时间为10‑30s,最大析氢转化率为2500‑2800molH2·molRu‑1·min‑1;催化放氢的活化能为Ea=15‑25kJ·mol‑1;经10次循环后,水解率仍保持为100%,催化剂保留60‑70%的初始催化活性。

    一种基于PA-MEL阻燃固化剂的阻燃涂料及其制备方法和应用

    公开(公告)号:CN117887324A

    公开(公告)日:2024-04-16

    申请号:CN202410058920.2

    申请日:2024-01-15

    摘要: 本发明公开了一种基于PA‑MEL阻燃固化剂的阻燃涂料,以尿素、甲醛为主要原料,三聚氰胺、木质素磺酸钠为助剂,邻苯二甲酸二辛酯DOP为增塑剂,植酸‑三聚氰胺聚电解质PM为生物基阻燃固化剂;分解质量为5%时的温度为244.9℃,达到最大分解速率时的温度为297.7℃;在800℃时的残炭量为37.4wt.%。其制备方法包含以下步骤:1,植酸‑三聚氰胺聚电解质PM的制备;2,脲醛树脂乳液MUF的制备;3,基于PA‑MEL阻燃固化剂的阻燃涂料SUF的制备。作为木材阻燃涂料的应用,具有阻燃性质,涂覆了阻燃涂料的木材在UL‑94等级测试中,通过UL‑94V‑0等级测试;完全燃烧后形成的残炭炭层表现出连续致密的性质,其存在的孔洞少且小;在极限氧指数测试中,极限氧指数为32.1%。

    一种具有光热-电热性能的磁性碳气凝胶基相变材料及其制备方法

    公开(公告)号:CN117866597A

    公开(公告)日:2024-04-12

    申请号:CN202410025344.1

    申请日:2024-01-08

    IPC分类号: C09K5/06

    摘要: 本发明公开了一种具有光热‑电热性能的磁性碳气凝胶基相变材料,以长链段羧基化纤维素CNF和氧化石墨烯GO交织组装,并通过九水硝酸铁Fe(NO3)3·9H2O的Fe离子络合交联,制备具有磁性和弹性的柔性碳气凝胶C‑GC;再通过C‑GC吸附二十烷即可制得PCMs;C‑GC的微观结构为相互连接蜂窝状多孔结构,GO为透明纳米薄片状,纳米薄片上均匀分布纳米颗粒;PCMs具有磁性;C‑GC具有弹性,压缩率为68.7%,移除压力后C‑GC回弹至初始高度,回复率为100%。其制备方法包括以下步骤:1,杂化气凝胶的制备;2,柔性碳气凝胶的制备;3,碳气凝胶基复合相变材料的制备。可以作为相变材料、光热材料和电热材料。