一种制备直接带隙Ge薄膜的方法

    公开(公告)号:CN103065938A

    公开(公告)日:2013-04-24

    申请号:CN201210593808.6

    申请日:2012-12-31

    Abstract: 本发明涉及一种制备直接带隙Ge薄膜的方法,包括提供一GeOI衬底;对所述顶层锗纳米薄膜进行图形化处理,开出若干与底部所述埋氧层贯通的腐蚀窗口;湿法腐蚀直至埋氧层被彻底腐蚀掉,使得所述图形化的顶层锗纳米薄膜与硅衬底虚接触;提供一PDMS载体,所述PDMS载体与所述顶层锗纳米薄膜紧密接触,从而将与硅衬底虚接触的顶层锗纳米薄膜转移到PDMS载体上;将该PDMS载体两端夹紧,并反向施加机械拉伸使得顶层锗纳米薄膜随着PDMS载体的拉伸而形变,在其内部产生张应变。采用本发明的方法制备的直接带隙Ge薄膜应变大小可控,可用于光电器件;其具有低缺陷、低位错密度的特点;通过机械拉伸制备直接带隙Ge纳米薄膜的方法工艺简单,成本较低。

    一种直接带隙Ge薄膜的制备方法及层叠结构

    公开(公告)号:CN103065933A

    公开(公告)日:2013-04-24

    申请号:CN201110325364.3

    申请日:2011-10-24

    Abstract: 本发明提供一种直接带隙Ge薄膜的制备方法及层叠结构,所述制备方法是首先在GaAs衬底上分别外延出InxGa1-xAs层和Ge层,其中,0.223﹤x≤1,并使InxGa1-xAs层的厚度不超过其生长在GaAs衬底上的临界厚度,使Ge层的厚度不超过其生长在InxGa1-xAs层上的临界厚度,以制备出Ge薄膜的样品;接着,对样品进行氦离子或氢离子注入,并使离子的峰值分布在所述InxGa1-xAs层与GaAs衬底相结合的界面下10nm~1000nm,然后对样品进行快速热退火以得到弛豫的InxGa1-xAs层和张应变Ge薄膜;依据InxGa1-xAs层的弛豫度得出InyGa1-yAs中In组分y,并在Ge层上外延出InyGa1-yAs层以减少样品中的缺陷密度,最后在InyGa1-yAs层上再外延顶层Ge薄膜,并使顶层Ge薄膜的厚度不超过其生长在所述InyGa1-yAs层上的临界厚度,以制备出直接带隙Ge薄膜。

    一种制备半导体弛豫、应变材料并使其层转移的方法

    公开(公告)号:CN103065931A

    公开(公告)日:2013-04-24

    申请号:CN201110324587.8

    申请日:2011-10-24

    Abstract: 本发明提供一种制备半导体弛豫、应变材料并使其层转移的方法,首先在Si衬底上依次外延生长中间薄层、Si外延层、及顶Si1-xGex层,其中Ge组分x为0﹤x≤0.5,并使Si1-xGex层的厚度不超过其生长在Si外延层上的临界厚度;然后对样品进行氦离子注入及氢离子,并使离子的峰值分布在中间薄层,经退火后使顶Si1-xGex层弛豫;最后将样品与支撑衬底键合,并依次进行预键合、剥离、以及加强键合作业,最后经选择性腐蚀去除残余的中间薄层及Si外延层,实现材料的层转移,本发明由于两次注入的离子都分布在薄层处,形成氢氦共注,有效降低剥离所需注入剂量,进而达到了提高生产效率和降低生产成本的目的。

    锗悬臂梁式二维光子晶体微腔及制备方法

    公开(公告)号:CN102590935B

    公开(公告)日:2013-04-24

    申请号:CN201110003997.2

    申请日:2011-01-10

    Abstract: 本发明提供一种锗悬臂梁式二维光子晶体微腔,包括:具有埋氧层、且表层为悬臂梁式锗材料层的半导体基底,其中,在锗材料层包含光子晶体微腔,所述光子晶体微腔由周期性排列的孔体所构成、但部分区域缺失孔体。此外,本发明还提供了该锗悬臂梁式二维光子晶体微腔的制备方法,即先在具有埋氧层、且表层为锗材料层的半导体基底的锗材料层中掺杂以形成n型重掺杂层,然后对锗材料层进行微机械加工形成光子晶体微腔,随后在部分区域进行光刻和刻蚀暴露出部分埋氧层,然后再进行湿法腐蚀,用以去除光子晶体微腔下的埋氧层,同时实现锗悬臂梁的释放。本发明的优点在于:能够通过外力调节悬臂梁上的应变从而实现锗向直接带隙的转变,并利用光子晶体微腔提高发光效率。

    一种制备悬空应变材料的方法

    公开(公告)号:CN101958238B

    公开(公告)日:2012-12-26

    申请号:CN201010223192.4

    申请日:2010-07-09

    Abstract: 本发明涉及一种制备悬空应变材料的方法,其特征在于制备的步骤是:a)提供一层具有各向异性腐蚀特性的半导体衬底材料;b)在步骤a所述的半导体材料上外延生长一层晶格常数比衬底材料大的晶体材料,外延的晶体材料层的厚度控制在临界厚度之内;c)接着在衬底材料底部上涂光刻胶,曝光刻蚀出所需的图形;d)对衬底材料进行湿法刻蚀,放入到KOH或TMAH溶液中,刻蚀到外延的晶体材料处自动停止;e)将步骤d所得材料进行退火工艺,使外延晶体材料中应力完全释放;退火温度为300-1000℃;f)退火后在图形上外延淀积晶体层,使晶体层受压应力或张应力;g)腐蚀移除晶体材料,从而制得悬空的应变材料,制备出的悬空材料中不存在应力释放,也即制备出的悬空材料无应力释放。

    锗和III-V混合共平面的SOI半导体结构及其制备方法

    公开(公告)号:CN102790084A

    公开(公告)日:2012-11-21

    申请号:CN201110126382.9

    申请日:2011-05-16

    CPC classification number: H01L21/84 H01L21/8258

    Abstract: 本发明提供了一种锗和III-V混合共平面的SOI半导体结构及其制备方法。绝缘体上锗和III-V族半导体材料共平面异质集成的半导体结构包含至少一个形成在绝缘层上的锗衬底,而另一衬底是被形成在锗半导体上的III-V族半导体材料。形成该半导体结构的制备方法包括:制备全局绝缘体上锗衬底结构;在绝缘体上锗衬底结构上制备III-V族半导体材料层;进行第一次光刻,将图形化窗口刻蚀至锗层以形成凹槽;在所述凹槽中制备侧墙;采用选择性外延制备锗薄膜;进行化学机械研磨以获得锗和III-V族半导体材料共平面的异质集成半导体结构;去除侧墙及紧靠侧墙处的缺陷锗层部分;实现锗和III-V族半导体材料之间的隔离;通过形成MOS结构制备包含锗沟道PMOS和III-V沟道NMOS的高性能CMOS器件。

    一种选择性刻蚀制备全隔离混合晶向SOI的方法

    公开(公告)号:CN102790005A

    公开(公告)日:2012-11-21

    申请号:CN201110125592.6

    申请日:2011-05-16

    Abstract: 本发明公开了一种选择性刻蚀制备全隔离混合晶向SOI的方法,以及基于该方法的CMOS集成电路制备方法。本发明提出的制备方法,采用SiGe层作为第一晶向外延的虚拟衬底层,从而可以形成第一晶向的顶层应变硅;采用从窗口直接外延覆盖至第一硬掩膜表面的Si作为连接窗口内第一晶向的应变硅与窗口外顶层硅的支撑,从而可去除第一晶向顶层应变硅下方的SiGe层,填充绝缘材料形成绝缘埋层,且还可以防止顶层硅有应变存在时的应变弛豫。该方法形成的顶层硅和绝缘埋层厚度均匀、可控,窗口内形成的应变硅与窗口外的顶层硅具有不同晶向,可分别为NMOS及PMOS提供更高的迁移率,从而提升了CMOS集成电路的性能。

    一种GOI晶片结构的制备方法

    公开(公告)号:CN102738060A

    公开(公告)日:2012-10-17

    申请号:CN201210225637.1

    申请日:2012-07-02

    CPC classification number: H01L21/76254

    Abstract: 本发明提供一种GOI晶片结构的制备方法,该方法首先利用Smart-Cut技术制作出SGOI晶片结构,然后对SGOI晶片结构进行锗浓缩,从而得到GOI晶片结构。由于利用Smart-Cut技术制作的SGOI在SGOI/BOX界面基本不存在失配位错,从而最终降低了GOI的穿透位错。本发明工艺简单,可实现高质量GOI晶片结构,大大改进了锗浓缩技术,离子注入技术、退火技术在目前半导体行业都是非常成熟的工艺,该制备方法大大提高了锗浓缩在半导体工业界广泛应用的可能性。

Patent Agency Ranking