-
公开(公告)号:CN116878512A
公开(公告)日:2023-10-13
申请号:CN202310841294.X
申请日:2023-07-10
Applicant: 北京理工大学
Abstract: 本发明公开的一种基于地形轮廓匹配的地外天体巡视器定位方法,属于空间机器人技术领域。本发明由里程计相对定位和投影搜索绝对定位两个线程组成。相对定位始终运行,绝对定位择机运行。相对定位线程运行视觉里程计,接收RGB图像,通过估计帧间运动累计出巡视器相机的位姿初值。绝对定位目的是在任务过程中修正相对定位的累计误差,或在丢失实时定位时找回全局定位。在巡视器运行过程中,通过高程图和巡视器方位判断视野内是否有明显的山脉轮廓作为参照以保证定位可靠性。根据相机内参、外参将地图点云投影至每个位姿节点,得到投影图。将各位姿的投影图与图像轮廓作特征匹配,选出匹配度最高的曲线,并选出最终全局最优位姿。
-
公开(公告)号:CN115016259A
公开(公告)日:2022-09-06
申请号:CN202210532210.X
申请日:2022-05-09
Applicant: 北京理工大学
IPC: G05B13/04
Abstract: 本发明公开的采用并联机构为作动器的星上大型挠性帆板振动控制方法,属于挠性航天器主动振动控制领域。本发明根据挠性帆板的物理特性和星本体的姿态控制要求,将并联机构安装在大型挠性帆板和星本体之间,针对基座不固定的天基系统,建立整星系统动力学模型,不需要考虑作动器的最优安装配置;考虑立方体构型并联机构的可达工作范围,考虑并联机构上平台与挠性帆板的姿态耦合特性,构建并联机构为执行器的自适应滑模振动控制方法;基于补偿控制方法和反馈控制方法设计星体姿态稳定控制器,相比于采用单一姿态控制的集中式控制方法,在实现大型挠性帆板快速振动抑制的同时,实现星本体的高精度姿态稳定,保障星上其余精密载荷的工作性能。
-
公开(公告)号:CN113177565A
公开(公告)日:2021-07-27
申请号:CN202110550638.2
申请日:2021-05-16
Applicant: 北京理工大学
Abstract: 本发明公开的一种基于深度学习的双目视觉位置测量系统及方法,属于多目视觉位置测量技术领域。本发明公开的系统,包括双目视觉图像捕获模块、深度学习物体识别模块、图像分割模块、拟合模块、双目点云模块。本发明还公开一种基于深度学习的双目视觉位置测量方法,基于卷积神经网络搭对图像特征进行提取、融合,根据图像识别任务对特征提取网络进行修剪,轻量化网络结构,利用全连接层网络对提取图像特征进行回归、解码,制作图像分割、拟合算法,将深度学习应用于双目视觉位置测量,能够兼顾测量适用性和准确性,能够对实际场景下多类别多数量物体的位置进行快速准确测量,具有非接触式测量、位置求解精准且实时性高的优点。
-
公开(公告)号:CN112036037A
公开(公告)日:2020-12-04
申请号:CN202010900499.7
申请日:2020-08-31
Applicant: 北京理工大学
IPC: G06F30/20 , G06F119/14
Abstract: 一种倾斜地球同步轨道的长期演化快速分析方法,首先推导各摄动项的一次或二次平均摄动势函数,包括地球非球形摄动带谐项 地球非球形摄动田谐项J22,J31,J32,J33,J41,J42,J43,J44的1:1共振部分、日月引力摄动勒让德展开截取到4阶项、太阳光压摄动;其次,通过拉格朗日型轨道摄动方程,结合平均摄动势函数,建立IGSO轨道的二次平均半解析轨道递推器;对比分析不同摄动源和阶数考虑下的IGSO轨道长期演化情况,简化模型,进一步提高轨道递推效率;最后,借助高效的轨道递推,绘制一系列完整轨道根数以及初始历元时刻组合的动力学网格图,其中可划分的轨道根数为(e,i,Ω,ω),它们的全部二元组合为e-i,ω-Ω;e-ω,i-Ω;e-Ω,i-ω,有关初始历元时刻InitialEpoch的全部二元组合为InitialEpoch-e,InitialEpoch-i,InitialEpoch-Ω,InitialEpoch-ω,根据动力学网格图完成对IGSO轨道长期演化的快速且全面的分析。
-
公开(公告)号:CN109799835B
公开(公告)日:2020-10-09
申请号:CN201910042232.6
申请日:2019-01-17
Applicant: 北京理工大学
IPC: G05D1/08
Abstract: 本发明公开的一种空间碎片的绳系拖曳最优离轨方法,属于航天器姿态和轨道动力学与控制领域。本发明实现方法为:通过拉格朗日方法建立绳系拖曳系统的轨道平面内姿轨耦合动力学模型;采用轨道转移优化求解方法求解转移轨道最优燃料问题,在保证绳系拖曳系统大范围最优轨道转移的同时,使绳系拖曳系统的姿态保持稳定。在绳系拖曳末时刻对碎片实施甩摆释放控制,使碎片获取最大初速度,飞向更远轨道,在减少碎片移除过程的燃料消耗的同时完成碎片移除任务。本发明能够在保证绳系拖曳系统大范围最优轨道转移的同时,使绳系拖曳系统的姿态保持稳定,平稳地将空间碎片进行移除,此外末时刻甩摆控制使碎片飞向更远轨道,同时减少碎片移除过程的燃料消耗。
-
公开(公告)号:CN110641737A
公开(公告)日:2020-01-03
申请号:CN201910956139.6
申请日:2019-10-09
Applicant: 北京理工大学
Abstract: 本发明公开的X构型储能式变速控制力矩陀螺机构及其控制方法,属于航空航天技术领域。X构型储能式变速控制力矩陀螺机构主要由真空室、封闭式外框架、立柱、和四个呈X构型分布的储能式变速控制力矩陀螺构成。四个力矩陀螺分成两两成对安装。储能式变速控制力矩陀螺之间的夹角范围为0~180°。本发明还公开一种用于柔性航天器振动能量一体化控制方法,用于控制所述力矩陀螺机构。本发明无需专门轮速平衡控制算法,仅需简单控制指令即能够实现柔性航天器振动能量一体化控制,并实现飞轮轮速平衡,进而不会因长期转速不均匀带来硬件寿命差异,提高硬件整体寿命;所述的X构型储能式变速控制力矩陀螺机构能够维持机构输出力矩在恒定方向,提高系统控制性能。
-
公开(公告)号:CN110480641A
公开(公告)日:2019-11-22
申请号:CN201910949024.4
申请日:2019-10-08
Applicant: 北京理工大学
IPC: B25J9/16
Abstract: 本发明公开的一种机械臂的递推分布式快速收敛鲁棒控制方法,属于机械臂控制领域。本发明实现方法为:首先对机械臂中相邻两臂杆分别建立其运动学、动力学递推关系,得到各臂杆的广义速率导数、以及相邻两个臂杆之间相互作用力的表达式;然后利用广义速率与相互作用力的表达式,推导状态误差方程,并结合有限时间控制和自适应鲁棒控制方法,设计机械臂的递推分布式快速收敛鲁棒控制器;接着分析所设计控制器的稳定性;最后利用机械臂的递推分布式快速收敛鲁棒控制器对机械臂进行实时轨迹跟踪控制,既能保证控制精度,提高鲁棒性,同时也能够降低计算成本,适用于机械臂实时轨迹跟踪控制工程实际。
-
公开(公告)号:CN109799835A
公开(公告)日:2019-05-24
申请号:CN201910042232.6
申请日:2019-01-17
Applicant: 北京理工大学
IPC: G05D1/08
Abstract: 本发明公开的一种空间碎片的绳系拖曳最优离轨方法,属于航天器姿态和轨道动力学与控制领域。本发明实现方法为:通过拉格朗日方法建立绳系拖曳系统的轨道平面内姿轨耦合动力学模型;采用轨道转移优化求解方法求解转移轨道最优燃料问题,在保证绳系拖曳系统大范围最优轨道转移的同时,使绳系拖曳系统的姿态保持稳定。在绳系拖曳末时刻对碎片实施甩摆释放控制,使碎片获取最大初速度,飞向更远轨道,在减少碎片移除过程的燃料消耗的同时完成碎片移除任务。本发明能够在保证绳系拖曳系统大范围最优轨道转移的同时,使绳系拖曳系统的姿态保持稳定,平稳地将空间碎片进行移除,此外末时刻甩摆控制使碎片飞向更远轨道,同时减少碎片移除过程的燃料消耗。
-
公开(公告)号:CN105843239B
公开(公告)日:2019-03-29
申请号:CN201610209737.3
申请日:2016-04-06
Abstract: 本发明涉及一种用于组合航天器姿态控制推力器布局优化方法,属于卫星姿态控制技术领域。本发明推力器的安装方向为倾斜安装;其次在推力器关节处加装具有双自由度的万向节;进而由期望控制力矩,以燃料消耗最少和万向节转动角度为约束,设计推力器推力分配模型;最后根据敏感器所反馈的姿态角及姿态角速度的变化,通过相平面控制方法,控制推力器的开关及喷气时长。实现了航天器姿态的快速机动,并减少燃料的消耗,形成完整控制回路。本发明基于万向节的转动,带动推力器喷气方向的改变,有效的解决了由交会对接引起的质心大范围偏移进而造成的不稳定控制问题。本发明能够减少燃料的消耗,延长航天器在轨服务寿命。
-
公开(公告)号:CN105511490B
公开(公告)日:2018-08-07
申请号:CN201510934925.8
申请日:2015-12-15
IPC: G05D1/10
Abstract: 本发明公开的种静止轨道卫星位置保持‑角动量卸载联合控制方法,属于卫星姿轨控制技术领域。本发明的方法通过调整推力器使推力方向不对准卫星质心,同时产生用于位置保持的速度增量和用于角动量卸载的力矩,从而同时实现位置保持和角动量卸载,推力器进行位置保持后无需再次单独开机进行角动量卸载,从而能够减少推力器开关机次数。由于位置保持机动的过程中同时实现了角动量卸载,不需要再次耗费燃料进行角动量卸载,从而以燃料较少的方式实现位置保持‑角动量卸载联合控制。本发明要解决的技术问题是在推力器关机次数较少且消耗较少燃料的情况下解决静止轨道卫星的位置保持、角动量卸载问题。
-
-
-
-
-
-
-
-
-