-
公开(公告)号:CN104562195B
公开(公告)日:2017-06-06
申请号:CN201310496579.0
申请日:2013-10-21
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种石墨烯的生长方法,至少包括以下步骤:S1:提供一绝缘衬底,将所述绝缘衬底放置于生长腔室中;S2:将所述绝缘衬底加热到预设温度,并在所述生长腔室中引入含有催化元素的气体;S3:在所述生长腔室中通入碳源,在所述绝缘衬底上生长出石墨烯薄膜。本发明通过引入气态催化元素催化方式,在绝缘衬底上快速生长高质量石墨烯,避免了石墨烯的转移过程,能够提高石墨烯的生产产量,而且大大降低了石墨烯的生长成本,有利于批量生产;本发明生长的石墨烯可应用于新型石墨烯电子器件、石墨烯透明导电膜、透明导电涂层等领域。
-
公开(公告)号:CN104192835B
公开(公告)日:2017-01-18
申请号:CN201410466181.7
申请日:2014-09-12
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/336 , C01B31/04
Abstract: 本发明提供一种石墨烯闪存存储器的制备方法,所述方法采用单层或者多层的连续石墨烯薄膜替代多晶硅栅或者氮氧化物存储电荷,能够在有限的物理空间内提高电荷存储容量,由于石墨烯厚度较薄,缩小器件纵向尺寸的同时,消除器件中电容耦合的影响,能有效避免相邻存储单元工作时的串扰问题。本发明的石墨烯闪存存储器的工艺简单,操作简便,在低功耗下便能实现石墨烯闪存存储器数据快速的写入擦除及读取功能。
-
公开(公告)号:CN103943512B
公开(公告)日:2016-07-06
申请号:CN201410189193.X
申请日:2014-05-07
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/336 , H01L21/28
Abstract: 本发明提供一种降低石墨烯与电极接触电阻的方法,包括步骤:首先,提供衬底,在所述衬底上形成石墨烯;然后,在所述石墨烯表面形成暴露出石墨烯两端的边缘的BN薄膜;接着,定义源、漏电极区域,形成金属催化层,并在氢气气氛中进行退火,使所述金属催化层团聚形成催化颗粒,所述氢气沿着所述催化颗粒的边缘与石墨烯及BN反应,在石墨烯及BN表面形成锯齿状结构的孔洞;形成源、漏金属电极、栅介质层以及栅极。本发明采用金属催化层刻蚀石墨烯,在氢气氛围下退火的过程中,金属催化层团聚形成小的颗粒,氢气沿着颗粒的边缘刻蚀BN/石墨烯表面,形成具有Zigzag边缘结构的孔洞,并能与随后沉积的源、漏金属电极形成极强的化学键,使金属电极与石墨烯接触更好。
-
公开(公告)号:CN105070347A
公开(公告)日:2015-11-18
申请号:CN201510504332.8
申请日:2015-08-17
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种以石墨烯作为接触电极的器件结构及其制备方法,涉及以石墨烯作为接触电极的器件结构技术领域,以干法转移的方法形成h-BN—石墨烯—超导/半导体材料—h-BN的新型器件结构,可以避免湿法转移工艺及图形化刻蚀、金属沉积工艺等对材料晶格造成的污染与破坏;以h-BN作为衬底及封装层,有利于维持石墨烯载流子迁移率,并保护器件避免吸附空气中的O2、H2O及微粒,以提高器件电学性能;此外采用石墨烯作为接触电极,沉积金属与石墨烯截面形成一维的线接触,将大大降低超导/半导体器件的接触电阻。
-
公开(公告)号:CN104894639A
公开(公告)日:2015-09-09
申请号:CN201510316129.8
申请日:2015-06-10
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C30B25/02 , H01L21/20 , H01L21/324
Abstract: 本发明的基于石墨烯场效应管微区加热的原位材料生长的方法,包括步骤:首先,制备基于石墨烯的场效应管,所述石墨烯具有窄边微区结构,所述场效应管的背面设置有背栅;然后,在所述石墨烯两端的电极之间加电压源或电流源,通过调节背栅电压来调制所述窄边微区结构的电阻,使所述窄边微区结构产生高温;接着,通入反应源,调节背栅电压,使石墨烯加热到材料生长需要的温度,实现石墨烯微区加热的原位材料生长。本发明基于石墨烯场效应管的微区加热原位生长材料方法操作简单,可以实现基于不同尺寸的微区高温加热的前提下,原位生长半导体材料,材料生长区域形状可控。另外,微区加热原位生长材料的制备方法简单,与现有的MOS工艺兼容,便于大规模阵列及图形化制备,均匀性好。
-
公开(公告)号:CN104192835A
公开(公告)日:2014-12-10
申请号:CN201410466181.7
申请日:2014-09-12
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C01B31/04 , H01L21/336
Abstract: 本发明提供一种石墨烯闪存存储器的制备方法,所述方法采用单层或者多层的连续石墨烯薄膜替代多晶硅栅或者氮氧化物存储电荷,能够在有限的物理空间内提高电荷存储容量,由于石墨烯厚度较薄,缩小器件纵向尺寸的同时,消除器件中电容耦合的影响,能有效避免相邻存储单元工作时的串扰问题。本发明的石墨烯闪存存储器的工艺简单,操作简便,在低功耗下便能实现石墨烯闪存存储器数据快速的写入擦除及读取功能。
-
公开(公告)号:CN103531482A
公开(公告)日:2014-01-22
申请号:CN201310533063.9
申请日:2013-10-31
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/336 , B82Y40/00
CPC classification number: H01L29/66045 , H01L29/1606
Abstract: 本发明提供一种石墨烯场效应管的制作方法,包括:提供表面形成有二氧化硅层的半导体衬底;形成浮动电势交流介电泳结构:至少一第一子电极的第一电极部、至少包括一第二子电极和子电极连接线的第二电极部和至少一第三子电极的第三电极部,所述子电极连接线贯穿连接所有所述第二子电极,第二子电极和第三子电极的顶端分别一一相对;形成碳纳米管悬浮液;利用交流介电泳工艺使得每一相对的第二子电极和第三子电极之间连接一碳纳米管;固定所述碳纳米管;利用溅射工艺形成金属层;去除所述金属,形成石墨烯纳米带。本发明成批量实现单根碳纳米管的精确对准,将单壁碳纳米管裁剪成石墨烯纳米带,使之呈现出典型的半导体特性。
-
公开(公告)号:CN102915929A
公开(公告)日:2013-02-06
申请号:CN201210425691.0
申请日:2012-10-30
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/336 , H01L21/28 , H01L21/8232
Abstract: 本发明提供一种石墨烯场效应器件集成方法。该方法在衬底上形成栅电极与对准标记。接下来制备出具有高介电常数的Al2O3薄膜,并利用湿法刻蚀的方法对其进行刻蚀,露出栅电极接触及对准标记。随后将采用化学气相沉积(CVD)方法制备的的单层石墨烯薄膜转移到衬底上,并采用等离子体刻蚀系统刻蚀形成墨烯场效应管(GFET)的导电沟道。最后采用EBL的定义源极、漏极电极区域,并采用光学曝光定义金属接触,沉积金属并剥离以实现金属互连。该方法与传统CMOS制造工艺兼容,简化了器件的制备工艺,有利于提高器件的性能。该发明适用于石墨烯基电子器件及大规模碳基集成电路的加工制造工艺。
-
公开(公告)号:CN107500277B
公开(公告)日:2019-12-24
申请号:CN201710890641.2
申请日:2017-09-27
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C01B32/186
Abstract: 本发明提供一种石墨烯边界的调控方法,包括骤:提供一绝缘衬底,并将绝缘衬底置于生长腔室中;向生长腔室中通入第一反应气体,且第一反应气体至少包括碳源气体,通过控制第一反应气体的流量,以于绝缘衬底表面形成具有第一边界形状的石墨烯结构,通过上述技术方案,本发明提供一种石墨烯边界调控方法,通过调节衬底表面生长石墨烯生长过程中碳源气体和催化气体的比例,以实现石墨烯的边界可控;本发明还可以在已经形成的石墨烯的基础上,通过改变生长条件使其继续生长,改变原有的石墨烯的边界形状;还可以在具有台阶的衬底表面生长石墨烯,通过对应取向台阶优化生长条件,得到特定取向且边界整齐的石墨烯带以及控制得到较窄的石墨烯纳米带。
-
公开(公告)号:CN106025061B
公开(公告)日:2018-07-31
申请号:CN201610552773.X
申请日:2016-07-14
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供种新型量子霍尔器件及其制备方法,包括:1)提供衬底,在所述衬底表面形成第超导薄膜层;2)在所述第超导薄膜层表面覆盖第介电薄膜层;3)然后在所述第介电薄膜层表面形成具有预设图形的石墨烯层或半导体薄膜层;4)在所述步骤3)形成的结构表面自下而上依次形成第二介电薄膜层和第二超导薄膜层;5)在所述衬底表面形成金属电极,所述金属电极与石墨烯层或半导体薄膜层接触。本发明基于二维材料和微电子加工工艺,在该器件中采用两层超导薄膜,利用超导材料对磁场的屏蔽特性,控制作用于器件的磁场大小,当超导薄膜较薄时,屏蔽部分外加磁场,剩余的磁力线形成周期磁场作用于超导薄膜,使其工作在正常态向超导态转变的区间,形成量子器件,在实现量子器件高速低功耗的同时,降低器件制备的技术难度。
-
-
-
-
-
-
-
-
-