-
公开(公告)号:CN104986728A
公开(公告)日:2015-10-21
申请号:CN201510274630.2
申请日:2015-05-26
Applicant: 中国科学院上海微系统与信息技术研究所 , 德国亥姆霍兹德累斯顿罗森多夫研究中心
CPC classification number: B81C1/00031 , B81C2201/0198 , H01L21/2633 , H01L21/302
Abstract: 本发明提供一种大面积纳米阵列的制备方法,包括步骤:首先,提供一衬底,采用低能离子束辐射所述衬底的表面,形成锯齿状纳米结构周期阵列;然后,采用沉积工艺在所述锯齿状纳米结构周期阵列的一侧沉积材料层,形成纳米结构阵列。本发明制备纳米阵列只需要两步,使传统制备纳米阵列的工艺大大简化。采用本发明的制备方法,可以快捷地得到有序纳米阵列,而不是散乱的纳米线或纳米管等,有利于进一步实现纳米器件的制备。此外,该方法可以在整片衬底上都产生纳米阵列结构,从而实现大面积的纳米阵列结构的制备,降低成本。
-
公开(公告)号:CN101908472B
公开(公告)日:2015-10-14
申请号:CN201010211441.8
申请日:2010-06-25
Applicant: 上海新傲科技股份有限公司 , 中国科学院上海微系统与信息技术研究所
IPC: H01L21/20 , H01L21/762
Abstract: 本发明提供了一种在绝缘层中嵌入纳米晶的半导体材料制备方法,包括如下步骤:提供器件衬底和支撑衬底,所述器件衬底中具有腐蚀自停止层;选择在器件衬底和支撑衬底的一个或者两个的表面形成绝缘层;在绝缘层中注入纳米晶改性离子;通过绝缘层将器件衬底和支撑衬底键合在一起;实施键合后的退火加固;利用腐蚀自停止层将器件衬底减薄至目标厚度以在绝缘层表面形成器件层。本发明的优点在于,通过对工艺顺序的巧妙调整,在不影响其他工艺的前提下,将形成纳米晶所采用的离子注入的步骤调整在键合之前实施的,从而不会影响到器件层的晶格完整性,提高了所制备的SOI材料的晶体质量。
-
公开(公告)号:CN104899343A
公开(公告)日:2015-09-09
申请号:CN201410077465.7
申请日:2014-03-04
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G06F17/50
Abstract: 本发明提供一种交叉栅结构MOSFET及多叉指栅结构MOSFET的版图设计,所述交叉栅结构MOSFET的版图设计包括:半导体衬底、十字形交叉栅结构、源区及漏区;所述十字形交叉栅结构包括第一条状栅及与所述第一条状栅垂直的第二条状栅,所述第一条状栅及第二条状栅将所述半导体衬底隔成四个区域;所述源区及漏区交替排列于所述四个区域。本发明可以提高有源区的利用率,增加驱动电流,减小栅电阻,提高最大震荡频率;采用交叉栅结构,采用螺旋状分布源极与漏极,充分利用了版图面积,并可实现多叉指栅结构,可以满足设计电路对器件的需求;同时若对栅的连接采用四端连接时,可以有效的降低栅电阻,从而明显提高器件的功率增益与最大振荡频率。
-
公开(公告)号:CN101916776B
公开(公告)日:2015-07-22
申请号:CN201010225623.0
申请日:2010-07-13
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L29/78 , H01L29/06 , H01L21/336
CPC classification number: H01L29/78612
Abstract: 本发明公开了一种具有BTS结构的SOIMOS器件及其制作方法。该SOIMOS器件的源区包括:两个重掺杂N型区、位于两个重掺杂N型区之间的重掺杂P型区、位于两个重掺杂N型区和重掺杂P型区之上的硅化物、以及与该硅化物相连的浅N型区;该重掺杂P型区与其上的硅化物形成欧姆接触,释放SOI MOS器件在体区积累的空穴,从而有效抑制SOI MOS器件的浮体效应,不增加芯片面积,并消除了传统BTS结构降低有效沟道宽度的缺点。制作时先通过离子注入的方法形成重掺杂P型区,再在源区表面形成金属,通过热处理使金属与其下的Si反应生成硅化物。该制造工艺简单与常规CMOS工艺相兼容。
-
公开(公告)号:CN104750923A
公开(公告)日:2015-07-01
申请号:CN201510136875.9
申请日:2015-03-26
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G06F17/50
Abstract: 本发明提供一种MOSFET的建模方法,包括步骤:首先,获得模型的源漏寄生电阻;然后,将获得的模型的源漏寄生电阻挂到DC模型上,进行IV/CV特性拟合;最后,当IV/CV特性拟合精度满足要求时,进行S参数的拟合,直至S参数的拟合满足精度要求,建立RF模型,生成模型卡。本发明通过将源漏寄生电阻加入DC模型和射频模型中,可以提高射频模型的建模精度,并且本发明将DC模型和射频模型相结合,可以减少射频模型建模的工作周期。
-
公开(公告)号:CN104750922A
公开(公告)日:2015-07-01
申请号:CN201510136732.8
申请日:2015-03-26
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G06F17/50
Abstract: 本发明提供一种SOI四端口网络及其模型拓扑结构,包括:第一端口、第二端口、第三端口以及第四端口,所述SOI器件进行射频建模时,栅极与所述第一端口连接,漏极与所述第二端口连接,源极与所述第三端口连接,体极与所述第四端口连接。通过SOI四端口网络,可以采用共源、共栅以及共漏电路中任意一种结构进行建模,各个端口根据需要进行电压设置。传统的两端口网络体电极只能接地,本发明的四端口网络体电极可以通过设置,获得不同体电压下的射频特性及噪声特性,使建模过程更加灵活。
-
公开(公告)号:CN104730111A
公开(公告)日:2015-06-24
申请号:CN201510141251.6
申请日:2015-03-27
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01N27/00
Abstract: 本发明提供一种基于Si/SiGe/Si量子阱MOSFET的生物传感器及其制备方法,所述制备方法包括:1)提供一Si/SiGe/SOI衬底;2)于所述Si/SiGe/SOI衬底表面制作出器件区域;3)于Si/SiGe/Si顶层两侧中注入P型离子,形成P+源区及P+漏区;4)于所述Si/SiGe/SOI衬底表面形成介质层;5)于与所述P+源区及P+漏区对应的介质层中形成金属接触开孔,并制作金属接触电极;6)制作电极保护层,并露出栅极传感区域;7)制作背栅;8)对栅极传感区域表面进行表面活化修饰。本发明采用高迁移率材料的SiGe材料作为沟道,且Si/SiGe/Si的量子阱的结构,在同样工艺下将得到更高信噪比的信息,从而与常规硅器件相比具有更高的灵敏度,可以对生物分子进行高灵敏的检测。
-
公开(公告)号:CN102468123B
公开(公告)日:2015-05-13
申请号:CN201010532635.8
申请日:2010-11-04
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/02 , H01L21/28 , H01L21/283
Abstract: 本发明公开了一种利用NiAl合金外延生长NiSiGe材料的方法,该方法包括在SiGe层表面淀积一层NiAl合金薄膜,然后进行退火工艺,使NiAl合金薄膜的Ni原子与SiGe层的SiGe材料进行反应,生成NiSiGe材料。因为Al原子的阻挡作用,NiSiGe层具有单晶结构,和SiGe衬底的界面很平整,可以达到0.3nm,可以大幅度提高界面的性质。
-
公开(公告)号:CN102916041B
公开(公告)日:2015-03-25
申请号:CN201210458192.1
申请日:2012-11-15
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L29/737 , H01L21/331
Abstract: 本发明提供一种基于SOI的锗硅异质结双极晶体管及其制作方法。该基于SOI的锗硅异质结双极晶体管,其包括背衬底、位于背衬底上的埋氧化层以及形成于该埋氧化层上的有源区和隔离区;所述有源区一端形成有集电极,其余部分形成集电区,所述集电区与所述隔离区上形成有基区,所述基区上形成有发射极和基极,所述发射极和基极分别被侧墙氧化层包围;所述集电区包括掺杂硅膜以及位于所述掺杂硅膜下部的重掺杂第一多晶硅层。本发明的基于SOI的锗硅异质结双极晶体管及其制作方法利用高剂量的Si离子注入,在SOI的顶层硅膜与埋氧层交界的地方形成多晶硅,多晶硅层降低了集电极电阻,从而有效提高了基于SOI的SiGe HBT器件的截止频率。
-
公开(公告)号:CN102779892B
公开(公告)日:2015-01-21
申请号:CN201110120147.0
申请日:2011-05-10
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L31/105 , H01L31/0232 , H01L31/0216 , G02B6/34
Abstract: 本发明公开了一种基于异质集成和垂直光耦合的硅基InGaAsPIN光电探测器,包括:SOI衬底;制作于SOI衬底顶层硅中的垂直耦合光栅;覆盖于垂直耦合光栅上的BCB键合层;位于BCB键合层之上的抗反射层;位于抗反射层之上的第一导电型磷化铟层;位于第一导电型磷化铟层之上的本征铟镓砷层;以及位于本征铟镓砷层之上的第二导电型磷化铟层;其中,垂直耦合光栅通过刻蚀SOI衬底的顶层硅制成,刻蚀深度为70-110nm;光栅周期为600-680nm;抗反射层的折射率介于BCB键合层与第一导电型磷化铟层之间。本发明的硅基InGaAsPIN光电探测器采用粘合性键合工艺将InP/InGaAs/InP叠堆材料层粘合于刻蚀在SOI衬底上的光栅上,使光与InP/InGaAs/InP层实现垂直耦合,为硅基InGaAs光电探测器的具体应用提供合适的设计及优化方案。
-
-
-
-
-
-
-
-
-