-
公开(公告)号:CN104986728B
公开(公告)日:2017-03-15
申请号:CN201510274630.2
申请日:2015-05-26
Applicant: 中国科学院上海微系统与信息技术研究所 , 德国亥姆霍兹德累斯顿罗森多夫研究中心
CPC classification number: B81C1/00031 , B81C2201/0198 , H01L21/2633 , H01L21/302
Abstract: 本发明提供一种大面积纳米阵列的制备方法,包括步骤:首先,提供一衬底,采用低能离子束辐射所述衬底的表面,形成锯齿状纳米结构周期阵列;然后,采用沉积工艺在所述锯齿状纳米结构周期阵列的一侧沉积材料层,形成纳米结构阵列。本发明制备纳米阵列只需要两步,使传统制备纳米阵列的工艺大大简化。采用本发明的制备方法,可以快捷地得到有序纳米阵列,而不是散乱的纳米线或纳米管等,有利于进一步实现纳米器件的制备。此外,该方法可以在整片衬底上都产生纳米阵列结构,从而实现大面积的纳米阵列结构的制备,降低成本。
-
公开(公告)号:CN105068166A
公开(公告)日:2015-11-18
申请号:CN201510275299.6
申请日:2015-05-26
Applicant: 中国科学院上海微系统与信息技术研究所 , 德国亥姆霍兹德累斯顿罗森多夫研究中心
IPC: G02B5/18
CPC classification number: B81C1/00031 , B81C2201/0198 , H01L21/2633 , H01L21/302
Abstract: 本发明的高线密度极紫外多层膜闪耀光栅的制备方法,包括步骤:首先,提供一衬底,采用低能离子束辐射所述衬底的表面,形成锯齿状纳米结构周期阵列;然后在所述锯齿状纳米结构周期阵列的表面生长周期性多层膜,形成极紫外多层膜闪耀光栅。本发明制备极紫外多层膜闪耀光栅只需要两步,大大简化了传统制备方法的复杂工艺。此外,采用本发明的制备方法,将大大增加闪耀光栅的栅线密度,从而大幅度地提高极紫外多层膜闪耀光栅的衍射效率和光谱分辨率。
-
公开(公告)号:CN104986722B
公开(公告)日:2017-06-06
申请号:CN201510275200.2
申请日:2015-05-26
Applicant: 中国科学院上海微系统与信息技术研究所 , 德国亥姆霍兹德累斯顿罗森多夫研究中心
CPC classification number: B81C1/00031 , B81C2201/0198 , H01L21/2633 , H01L21/302
Abstract: 本发明提供一种纳米图形化的方法,所制备结构单元具有周期性排列,所述纳米图形化方法包括以下步骤:提供至少由两种化学元素组成的单晶材料的衬底;对衬底或表面进行加热;利用离子束辐照衬底表面,在衬底表面产生空位。
-
公开(公告)号:CN104986722A
公开(公告)日:2015-10-21
申请号:CN201510275200.2
申请日:2015-05-26
Applicant: 中国科学院上海微系统与信息技术研究所 , 德国亥姆霍兹德累斯顿罗森多夫研究中心
CPC classification number: B81C1/00031 , B81C2201/0198 , H01L21/2633 , H01L21/302
Abstract: 本发明提供一种纳米图形化的方法,所制备结构单元具有周期性排列,所述纳米图形化方法包括以下步骤:提供至少由两种化学元素组成的单晶材料的衬底;对衬底或表面进行加热;利用离子束辐照衬底表面,在衬底表面产生空位。
-
公开(公告)号:CN105068166B
公开(公告)日:2017-12-29
申请号:CN201510275299.6
申请日:2015-05-26
Applicant: 中国科学院上海微系统与信息技术研究所 , 德国亥姆霍兹德累斯顿罗森多夫研究中心
IPC: G02B5/18
CPC classification number: B81C1/00031 , B81C2201/0198 , H01L21/2633 , H01L21/302
Abstract: 本发明的高线密度极紫外多层膜闪耀光栅的制备方法,包括步骤:首先,提供一衬底,采用低能离子束辐射所述衬底的表面,形成锯齿状纳米结构周期阵列;然后在所述锯齿状纳米结构周期阵列的表面生长周期性多层膜,形成极紫外多层膜闪耀光栅。本发明制备极紫外多层膜闪耀光栅只需要两步,大大简化了传统制备方法的复杂工艺。此外,采用本发明的制备方法,将大大增加闪耀光栅的栅线密度,从而大幅度地提高极紫外多层膜闪耀光栅的衍射效率和光谱分辨率。
-
公开(公告)号:CN104986728A
公开(公告)日:2015-10-21
申请号:CN201510274630.2
申请日:2015-05-26
Applicant: 中国科学院上海微系统与信息技术研究所 , 德国亥姆霍兹德累斯顿罗森多夫研究中心
CPC classification number: B81C1/00031 , B81C2201/0198 , H01L21/2633 , H01L21/302
Abstract: 本发明提供一种大面积纳米阵列的制备方法,包括步骤:首先,提供一衬底,采用低能离子束辐射所述衬底的表面,形成锯齿状纳米结构周期阵列;然后,采用沉积工艺在所述锯齿状纳米结构周期阵列的一侧沉积材料层,形成纳米结构阵列。本发明制备纳米阵列只需要两步,使传统制备纳米阵列的工艺大大简化。采用本发明的制备方法,可以快捷地得到有序纳米阵列,而不是散乱的纳米线或纳米管等,有利于进一步实现纳米器件的制备。此外,该方法可以在整片衬底上都产生纳米阵列结构,从而实现大面积的纳米阵列结构的制备,降低成本。
-
公开(公告)号:CN119947209A
公开(公告)日:2025-05-06
申请号:CN202411965526.3
申请日:2024-12-30
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本申请提供了一种氧化镓功率器件及其制备方法,该制备方法通过将氧化镓衬底与器件衬底进行键合处理、退火处理之后,实现了氧化镓和器件衬底的异质集成,从而可以提升氧化镓功率器件的散热能力,之后通过对氧化镓异质结构进行开槽处理,显露部分器件衬底的表面,形成沟道结构,可以控制器件的开关,并可实现天然的增强型功率器件,提升氧化镓器件在模块和电路中的安全性;之后在沟道结构和氧化镓衬底上制备场板结构,能够提高器件的击穿电压、抑制电流崩塌、改善期间性能以及优化电场分布,从而基于异质集成得到了一种增强型、高导热的氧化镓功率器件。
-
公开(公告)号:CN116781033B
公开(公告)日:2025-04-08
申请号:CN202310678398.3
申请日:2023-06-08
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及微电子器件领域,特别涉及一种高频声波谐振器及其制备方法。该高频声波谐振器包括由下至上依次层叠的支撑衬底、压电薄膜和叉指换能器;其中,支撑衬底的声速不低于5000米/秒;高频声波谐振器的目标模式是由纵向电场激励产生的准体波模式;叉指换能器的厚度与叉指换能器的材料密度呈反比;目标模式的声速小于支撑衬底的声速。基于异质集成衬底,在简化声波谐振器结构的同时,降低欧姆损耗,提高高阶模式的机电耦合系数。
-
公开(公告)号:CN115274943B
公开(公告)日:2025-02-18
申请号:CN202210932216.6
申请日:2022-08-04
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H10H20/01 , H10H20/811 , H10H20/857
Abstract: 本发明涉及一种混合集成单光子LED器件的制备方法,包括步骤:S1依次在第一衬底上生长缓冲层、牺牲层和P‑I‑N结构,得到第一薄膜;S2沉积第一金属图案,并进行腐蚀或刻蚀,获得第二薄膜;S3对牺牲层进行湿法腐蚀或干法刻蚀,获得第三薄膜;S4拾起第三薄膜并翻转180°;S5在第二衬底上沉积第二金属图案;S6将第一金属图案与第二金属图案对准与接触,进行金‑金键合,得到第四薄膜;S7沉积第三金属图案,得到混合集成单光子LED器件。本发明的混合集成单光子LED器件的制备方法,利用金‑金键合方式解决了转移后的薄膜与衬底之间的粘附性不足的问题,且后续的电极工艺无需生长绝缘层,有效地简化了工艺流程。
-
公开(公告)号:CN119381252A
公开(公告)日:2025-01-28
申请号:CN202411509689.0
申请日:2024-10-28
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/265 , H01L21/02 , H01L21/223 , H01L21/306 , H10D84/03
Abstract: 本发明提供了一种阵列化的碳基半导体薄膜材料及其制备方法,首先将经离子注入的半导体晶圆和表面具有牺牲层的支撑衬底,沿牺牲层进行键合,随后对半导体薄膜层进行刻蚀处理,以使半导体薄膜层形成阵列化图案,得到阵列化的半导体薄膜层,以及通过刻蚀处理去除牺牲层,得到包含阵列化的半导体薄膜层和支撑衬底的半导体异质材料,再通过转印技术将阵列化的半导体薄膜层,从支撑衬底上转移至目标碳基衬底上,得到阵列化的碳基半导体薄膜材料。通过该方法可实现半导体与具有优良性能的碳基材料的异质集成,进一步释放半导体半导体材料在功率、射频等领域的应用潜力。
-
-
-
-
-
-
-
-
-