一种动态可重构的卷积神经网络多核加速器

    公开(公告)号:CN114330658B

    公开(公告)日:2025-03-14

    申请号:CN202111630592.1

    申请日:2021-12-28

    Abstract: 本发明涉及一种动态可重构的卷积神经网络多核加速器,包括指令分发模块和与其连接、受其控制的加载模块、路由模块、计算模块和卸载模块;加载模块从外部加载输入特征数据和卷积核数据;路由模块将加载的数据分配给计算模块进行卷积神经网络加速处理;计算模块将结果通过卸载模块输出;加载模块、路由模块、计算模块和卸载模块中包括多路的加载器、路由器、计算核心和卸载器;在卷积神经网络处理过程中,指令分发模块对多路加载器、路由器、计算核心和卸载器进行分组动态重构,在计算核心中加载特征数据和卷积核数据,执行并行卷积神经网络加速处理。本发明利用动态重构实现多个计算核心间的并行,提高卷积神经网络的大动态适应能力。

    针对卷积神经网络最大池化层的池化器及池化加速电路

    公开(公告)号:CN114265696B

    公开(公告)日:2024-12-20

    申请号:CN202111632969.7

    申请日:2021-12-28

    Abstract: 本发明涉及一种针对卷积神经网络最大池化层的池化器及池化加速电路,池化器包括第一选择器、第二选择器、比较器、常数寄存器和池化寄存器;比较器的第一输入端输入池化窗口中的特征数据,第二输入端接入第一选择器的输出数据,输出端连接到第二选择器;第一选择器的第一输入端连接常数寄存器,第二输入端连接外部的池化缓存从中读取数据,第三输入端连接池化寄存器输出端;第二选择器的第一输出端作为池化最终结果输出端,第二输出端连接外部的池化缓存向其写入数据,第三输出端连接池化寄存器的输入端。本发明以尽可能小的FPGA资源消耗量,实现常见CNN中最大池化层的高效计算,进而解决将CNN部署到嵌入式设备中遇到的实时性问题和功耗问题。

    一种面向卷积神经网络的高可靠加速器

    公开(公告)号:CN114327676B

    公开(公告)日:2024-07-19

    申请号:CN202111632984.1

    申请日:2021-12-28

    Abstract: 本发明涉及一种面向卷积神经网络的高可靠加速器,包括指令分发模块和与其连接、受其控制的加载模块、路由模块、计算模块、冗余控制模块、和卸载模块;在指令分发控制模块的控制下,所述加载模块从外部加载输入特征数据和卷积核数据;路由模块将加载的数据分配给计算模块;所述计算模块中包括多个并列的计算核心,每个计算核心均用于接收分配数据进行卷积神经网络加速处理,输出处理结果;冗余控制模块将所述计算模块输出的多路计算结果输出到所述卸载模块,通过卸载模块将卷积神经网络加速处理结果卸载输出。本发明实现了卷积神经网络的加速处理,并兼顾卷积神经网络的高速处理和高可靠性处理的要求。

    一种数据流驱动的卷积神经网络加速器

    公开(公告)号:CN114358266A

    公开(公告)日:2022-04-15

    申请号:CN202111683726.6

    申请日:2021-12-28

    Abstract: 本发明涉及一种数据流驱动的卷积神经网络加速器,包括:预处理模块、卷积模块、池化模块和指令分发模块;预处理模块用于加载输入特征执行卷积神经网络的预处理;卷积模块用于加载权重、偏置数据以及输入特征执行卷积层、全连接层或非线性激活层的计算;池化模块用于加载卷积模块的计算结果执行池化层的计算输出;指令分发模块用于对所述预处理模块、卷积模块和池化模块进行工作模式的配置和控制;在指令分发模块的工作模式配置和控制下,根据卷积神经网络结构,将预处理模块、卷积模块和池化模块进行动态的流式结构连接;实现对输入数据的卷积神经网络加速处理。本发明提高CNN加速器的可扩展性,提升系统的整体性能。

Patent Agency Ranking