-
公开(公告)号:CN115289082B
公开(公告)日:2024-08-16
申请号:CN202210872450.4
申请日:2022-07-20
Applicant: 燕山大学
IPC: F15B11/17 , F15B19/00 , F15B1/02 , F15B13/02 , F15B21/041 , F15B21/0423
Abstract: 本发明提供一种四足机器人用轻量化液压油源,其包括高速电机泵模块、高压油路模块、低压油路模块、控制模块和支撑模块,其中,高速电机泵模块、高压油路模块、低压油路模块和控制模块均设置在支撑模块上;高速电机泵模块、高压油路模块和低压油路模块彼此之间相互连接。控制模块与其余模块通讯连接并对其余模块的工作进行控制。一方面,本发明的液压油源体积小、供油压力大、液压系统的流量高且液压系统流量和压力调节方便。另一方面,本发明的液压油源功重比高,能够在为液压足式机器人提供充足动力的同时,减轻了负重,提高了机器人的续航能力和机动性,能够在多种机器人领域进行应用。
-
公开(公告)号:CN114734470B
公开(公告)日:2024-04-12
申请号:CN202210260398.7
申请日:2022-03-16
Applicant: 燕山大学
IPC: B25J15/00 , B62D57/032
Abstract: 本发明公开一种多形态变换爪足机构,其包括驱动组件、支撑组件和爪足组件;驱动组件设置在支撑组件的第一端,爪足组件设置在支撑组件的第二端;驱动组件包括电机、电机支架、电机固定架以及丝杆,电机的侧壁与电机支架连接,电机支架的一端与电机固定架连接,电机固定架的中心位置开设有孔洞,丝杆穿过孔洞,电机的输出端与丝杆的一端连接,电机带动丝杆转动,丝杆贯穿支撑组件的内部。本装置通过电机带动丝杆的转动从而满足爪足组件中爪型脚掌的同时驱动,同时爪足组件设置有三种形态,能够在满足复杂地形的机械行走的同时,还能满足抓取物品的需求,实现整体机构的多功能化。
-
公开(公告)号:CN117251056A
公开(公告)日:2023-12-19
申请号:CN202311314171.7
申请日:2023-10-11
IPC: G06F3/01
Abstract: 本发明提供一种基于电线和电器设备产生的工频电场的仿生触觉传感器,涉及传感技术领域,其包括:感知模块、第一采集模块、第二采集模块和处理器;感知模块包括基底层和设置在基底层上的碳基电阻层;感知模块设置在电线和电器设备产生的工频电场中,工频电场为感知模块供能;当在感知模块上施加手指触摸的机械刺激时:人体、电线和电器设备、大地、感知模块、第一采集模块和第二采集模块之间形成环路;处理器根据第二电极的电压值与第一电极的电压值的比值,结合内置的各单位阻值的电压比数据,得到触摸点位置。本发明无需电池供电,具有制备简单、成本低、响应快速、形状自适应强、传感机制简单和抗干扰能力强等优点。
-
公开(公告)号:CN116175550A
公开(公告)日:2023-05-30
申请号:CN202211604363.7
申请日:2022-12-13
Applicant: 燕山大学
IPC: B25J9/16 , B62D57/032 , G06F30/20 , G06F17/11 , G06F17/16
Abstract: 本发明涉及一种能适应不同刚度地面的液压腿SLIP模型变刚度控制方法,其包括以下步骤:基于串联总刚度获取不同地面刚度下笛卡尔空间z方向腿部刚度;引入SLIP模型,获取沿足端到质心的SLIP模型变刚度参数;分别构建足端与关节广义力、广义位置的刚度关系,推导液压腿足端与关节等效刚度映射关系,获取关节变刚度参数;建立液压腿SLIP模型液压缸变刚度参数;最后结合液压腿SLIP模型液压缸变刚度参数与环境变刚度参数,实现不同环境刚度下的变刚度控制。其得到一套完整对应关系获取关节到等效SLIP刚度关系式,在该关系式下能精确调节液压驱动关节的主动柔顺参数,实现关节的主动变刚度控制,以适应不同环境刚度。
-
公开(公告)号:CN115010007B
公开(公告)日:2023-05-05
申请号:CN202210639424.7
申请日:2022-06-07
Applicant: 燕山大学
IPC: B66C23/04 , B66C23/36 , B66C23/62 , B66C23/69 , B66C23/84 , B66C1/02 , B66C13/22 , B66C13/20 , B66C13/40
Abstract: 本发明提供一种电机和气泵混合驱动的搬运装置,其包括平移机构、旋转机构、升降机构、行走机构和末端执行机构,平移机构的平移齿条垂直于行走机构的行走齿条,平移机构、旋转机构、升降机构和末端执行机构均位于行走机构上方,平移机构的平移滑块与旋转机构的第二轴承外座固定连接,旋转机构的旋转滑块与升降机构的升降滑块连接,升降机构的升降齿轮与行走机构的行走齿条啮合,末端执行机构的气泵支架与平移机构的平移齿条连接。本发明通过控制各电机,使末端执行机构实现水平、竖直移动和定轴转动三个自由度的运动,确保末端执行机构完成不同工况下货物的吸附搬运工作,有效地解决了现有搬运装置结构复杂和工作效率低的问题。
-
公开(公告)号:CN115235325B
公开(公告)日:2025-05-16
申请号:CN202210750057.8
申请日:2022-06-28
Applicant: 燕山大学
Abstract: 本发明提供一种基于纳米摩擦电的自供电位置传感器,其包括发电组件、支撑组件和传导组件,发电组件和支撑组件的第一安装端连接,传导组件和支撑组件的第二安装端连接。发电片沿着触摸层的长度方向均匀分布,支撑条对称分布在底座的两侧;电阻线的两侧安装端分别与左接地板和右接地板固连,第一个左电极和第二个左电极位于电阻线靠近左接地板的一侧,第一个右电极和第二个右电极位于电阻线靠近右接地板的一侧,第一个左电极和第二个左电极分别与第一铜丝导线和第二铜丝导线连接,第一个右电极和第二个右电极分别与第三铜丝导线和第四铜丝导线连接。本发明能通过双接口和单一机制同时识别多种外部刺激,柔性和灵活度高,实际应用价值高。
-
公开(公告)号:CN115037142B
公开(公告)日:2025-05-09
申请号:CN202210575534.1
申请日:2022-05-24
Applicant: 燕山大学
Abstract: 本发明涉及一种三通比例减压阀死区及滞环补偿方法,其包括以下步骤,步骤一:搭建系统平台,获得期望输入激励电流与实际输入激励电流间的关系;步骤二:确定实际输入激励电流与输出压力的关系;步骤三:将获得的实际输入激励电流与输出压力之间的关系进行多项式拟合;步骤四:确定期望输入激励电流与实际输入激励电流的具体关系表达式,补偿减压阀的死区和滞环。本发明通过多项式拟合计算期望输出压力下的期望激励电流,完成了对三通比例减压阀死区和滞环的补偿;能兼顾三通比例减压阀的死区和滞环,针对二者同时进行补偿;与传统硬件补偿方法相比,无需额外添加硬件检测电路,结构更加简单,计算结果更准确。
-
公开(公告)号:CN116141308A
公开(公告)日:2023-05-23
申请号:CN202211604364.1
申请日:2022-12-13
Applicant: 燕山大学
IPC: B25J9/16
Abstract: 本发明提供一种基于足端与液压驱动单元等效刚度阻尼映射的控制方法,其包括下述步骤:构建液压腿部模型,得出足端与转动关节等效刚度映射关系,得出转动关节与液压驱动单元等效刚度映射关系,进一步建立足端与液压驱动单元等效刚度映射关系;建立足端与液压驱动单元等效阻尼映射关系,进一步建立液压驱动型腿部足端与液压驱动单元等效刚度、阻尼映射关系并进行控制。本发明可以根据液压机械臂、液压腿的足端刚度、阻尼柔顺参数精确求解旋转关节及液压驱动单元的柔顺参数,与纯位置控制或具有被动弹簧的柔顺控制相比,液压腿足端刚度、阻尼参数可通过液压驱动缸精确控制、而无需额外设计被动弹簧等机械结构,成本低,可靠性高。
-
公开(公告)号:CN113219829B
公开(公告)日:2022-12-16
申请号:CN202110452940.4
申请日:2021-04-26
Applicant: 燕山大学
IPC: G05B13/04
Abstract: 本发明涉及一种液压驱动单元的位置控制方法及系统,所述方法包括如下步骤:获取液压驱动单元的位置误差;根据所述位置误差,基于拟牛顿算法确定用于控制液压驱动单元的初始控制信号;根据所述位置误差,基于模糊规则确定控制信号优化步长的搜索方向;在所述搜索方向上,采用Armijo‑Goldstein准则确定控制信号优化步长;利用所述控制信号优化步长对初始控制信号进行优化,并基于优化后的控制信号对所述液压驱动单元进行控制,本申请在确定初始控制信号的基础上,利用模糊、Armijo‑Goldstein准则等对初始控制信号进行优化,提升了液压驱动单元的控制系统的自适应能力和稳定性。
-
公开(公告)号:CN115373269A
公开(公告)日:2022-11-22
申请号:CN202211034456.0
申请日:2022-08-26
Applicant: 燕山大学
IPC: G05B13/04 , B62D57/032
Abstract: 本发明涉及一种四足机器人行走与对角步态运动控制方法,其包括以下步骤,步骤一:利用低维点质量模型模拟四足机器人运动,用离散化方法建立预观时域运动过程的离散状态方程;步骤二:通过线性约束域处理四足机器人行走和小跑步态,确定优化区间;步骤三:建立预观时域内机器人步态运动控制模型的性能指标评价函数,求解机器人的期望落足点和质心位置;步骤四:根据机器人的期望落足点和质心位置,实现四足机器人运动控制。本发明提出的运动控制方法利用离散化方法建立预观时域离散状态方程;将四足机器人步态模式与双足机器人步态模式进行映射,引入线性约束域对机器人运动进行处理;解决机器人行走和小跑步态的运动控制问题,具有高鲁棒性。
-
-
-
-
-
-
-
-
-