一种基于多任务图神经网络的分子属性预测方法

    公开(公告)号:CN119230006A

    公开(公告)日:2024-12-31

    申请号:CN202411275784.9

    申请日:2024-09-12

    Abstract: 本发明公开了一种基于多任务图神经网络的分子属性预测方法,首先根据场景确定分子属性预测任务;然后根据确定的任务选择相关训练数据并进行预处理;针对每个任务搭建使用图神经网络训练;再结合所有任务,组成多任务图神经网络,确定全局目标损失函数;最后基于预处理后的数据对多任务图神经网络进行训练,得到最优的图神经网络模型。本发明针对分子结构相关的图数据保持良好的学习效率,在预测分子结构全局或者局部性质上有良好的表现。本发明提升了分子结构的预测速度和效率,相比较传统方法有着较大提升,是深度学习和分子结构预测的良好融合。

    一种基于Transformer和双域选择机制的图像散焦去模糊方法

    公开(公告)号:CN118469844A

    公开(公告)日:2024-08-09

    申请号:CN202410673350.8

    申请日:2024-05-28

    Abstract: 本发明公开了一种基于Transformer和双域选择机制的图像散焦去模糊方法,包括步骤如下:步骤一:数据集获取及预处理;步骤二:构建一种基于Transformer和双域选择机制的图像散焦去模糊网络模型;步骤三:使用预处理后的数据集训练基于Transformer和双域选择机制的图像散焦去模糊的网络模型;步骤四:通过训练好的网络模型完成图像散焦去模糊测试。本发明通过深度提取初始特征和末尾特征,并通过剔除特征中的低频信息来增强高频信息。采用端到端的方法构建神经网络,其中利用Transformer模块在一个尺度上提取高质量的图像信息,并通过双域选择模块来保持空间细节的精确性。

    一种基于图匹配的街景建筑跨源点云配准方法

    公开(公告)号:CN118351151A

    公开(公告)日:2024-07-16

    申请号:CN202410429433.2

    申请日:2024-04-10

    Abstract: 本发明公开了一种基于图匹配的街景建筑跨源点云配准方法。首先将获得的两个跨源点云集归一化为相同的尺度,利用三维点云的几何特性,将街景建筑点云分割成超体素,并且提取这些超体素的特征描述符。将提取的超体素和其特征描述符作为图的节点,超体素的相邻关系作为边构建图,将三维点云配准转化为图结构匹配。根据图匹配结果得到的对应关系执行街景建筑点云配准,最终得到两个跨源点云集间的刚性变换配准结果。本发明对跨源点云采用微观结构和宏观结构的提取,将三维点云配准转化成图匹配,并且优化了图匹配的方法,大大提高了跨源点云的配准精度和效率。

Patent Agency Ranking