基于强化学习的场景布局估计方法

    公开(公告)号:CN118865392A

    公开(公告)日:2024-10-29

    申请号:CN202411339837.9

    申请日:2024-09-25

    Abstract: 本发明公开了基于强化学习的场景布局估计方法,涉及场景布局估计技术领域,包括如下步骤:将场景的稠密点云映射到平面上,利用形态学侵蚀进行分割,并进行合并处理,得到房间点云;再将房间点云投影到二维平面上,提取房间点云中的边缘点云,并进行分割处理,得到独立区域的壁面点云;然后基于Q‑learning算法,确定强化学习中的状态、动作和奖励;再基于独立区域的壁面点云采用Q‑learning算法拟合线段,得到独立区域的壁面线段数据;最后基于独立区域的壁面线段数据,生成场景布局模型;本发明用于解决现有技术中无法在消除了独立区域之间的干扰和遮挡物的影响的同时减少计算量,场景布局估计效率和准确性较低的问题。

    一种基于Transformer和双域选择机制的图像散焦去模糊方法

    公开(公告)号:CN118469844A

    公开(公告)日:2024-08-09

    申请号:CN202410673350.8

    申请日:2024-05-28

    Abstract: 本发明公开了一种基于Transformer和双域选择机制的图像散焦去模糊方法,包括步骤如下:步骤一:数据集获取及预处理;步骤二:构建一种基于Transformer和双域选择机制的图像散焦去模糊网络模型;步骤三:使用预处理后的数据集训练基于Transformer和双域选择机制的图像散焦去模糊的网络模型;步骤四:通过训练好的网络模型完成图像散焦去模糊测试。本发明通过深度提取初始特征和末尾特征,并通过剔除特征中的低频信息来增强高频信息。采用端到端的方法构建神经网络,其中利用Transformer模块在一个尺度上提取高质量的图像信息,并通过双域选择模块来保持空间细节的精确性。

Patent Agency Ranking