-
公开(公告)号:CN116071606A
公开(公告)日:2023-05-05
申请号:CN202310210827.4
申请日:2023-03-07
Applicant: 杭州电子科技大学丽水研究院
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06V10/40 , G06N3/047 , G06N3/08 , G06N3/0464
Abstract: 本发明公开了基于多尺度多注意力实例学习的sMRI图像分类方法,首先获取数据集,构建多尺度多注意力实例学习模型,通过空间金字塔池化模块将不同大小脑区转化为相同尺度;通过patch‑net处理模块获取相应的局部特征增强;通过注意力多实例学习模块来增强全局特征;通过分类器得到分类结果;最后通过训练多尺度多注意力实例学习模型。本发明是采取了区域块的分析方法,能获取对大脑病变影响更大的位置,引入了双注意机制,能增强到局部和全局的特征;本发明采用了将分割数据和脑区数据结合的多模态数据,加强分类效果。