-
公开(公告)号:CN119135909A
公开(公告)日:2024-12-13
申请号:CN202411276973.8
申请日:2024-09-12
Applicant: 杭州电子科技大学 , 杭州电子科技大学丽水研究院
IPC: H04N19/147 , H04N19/186 , H04N19/124 , H04N19/154 , H04N19/14 , H04N19/42
Abstract: 本发明公开了一种视频压缩的多层级全RGB恰可察觉感知编码失真预测方法,该方法首先获取公开视频集,将视频集中视频处理为RGB视频,获取感知编码失真标签。然后基于RGB视频,提取视觉感知特征。最后构建RGB‑JNCD‑NET预测模型,视觉感知特征通过RGB‑JNCD‑NET预测模型,输出编码失真预测结果。本发明可以在不影响感知质量的同时,实现高效准确的失真编码预测。
-
公开(公告)号:CN117029858A
公开(公告)日:2023-11-10
申请号:CN202311052725.0
申请日:2023-08-21
Applicant: 杭州电子科技大学丽水研究院
IPC: G01C21/34
Abstract: 本发明公开了一种基于改进式蚁群算法的外卖员路径规划系统及方法。本发明系统包括订单信息授权模块、外卖员当前位置获取模块、商家及配送位置获取模块、路况匹配模块、外卖员配送路径规划模块和外卖员配送路径导航模块。相比于外卖员自行寻找配送路径,本发明专利提出的外卖员路径规划系统通过小程序获取外卖员订单信息,系统将外卖员位置以及商家位置和订单配送位置与地图上的路况信息进行对应,并且通过改进式遗传算法对外卖员配送路径进行规划。同时系统及时更新订单信息,及时对路径进行重新规划,提高了外卖员配送的效率。
-
公开(公告)号:CN116193122A
公开(公告)日:2023-05-30
申请号:CN202310189604.4
申请日:2023-03-02
Applicant: 杭州电子科技大学 , 杭州电子科技大学丽水研究院
IPC: H04N19/147 , H04N19/124 , H04N19/91 , H04N19/172 , H04N19/30 , H04N19/50
Abstract: 本发明公开了一种多层级多模块协同视频感知编码优化方法及装置,通过原始视频进行编码失真预测、帧级编码失真预测及帧级量化参数的推导;对原始视频的图像进行帧内/帧间预测,并将得到的预测图像与原始图像进行差计算,得到残差图像,通过预测的编码失真,对残差图像进行残差滤波,滤波后的残差图像基于残差块变换后,再根据预测的帧级编码失真和帧级量化参数,进行感知量化;基于感知量化参数进行率失真优化,优化帧内/帧间预测;构建感知质量增强网络,用于优化帧内/帧间预测;基于优化的帧内/帧间预测,对原始视频的图像进行预测、差计算、残差滤波、变换、感知量化后,进行熵编码。
-
公开(公告)号:CN116071606A
公开(公告)日:2023-05-05
申请号:CN202310210827.4
申请日:2023-03-07
Applicant: 杭州电子科技大学丽水研究院
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06V10/40 , G06N3/047 , G06N3/08 , G06N3/0464
Abstract: 本发明公开了基于多尺度多注意力实例学习的sMRI图像分类方法,首先获取数据集,构建多尺度多注意力实例学习模型,通过空间金字塔池化模块将不同大小脑区转化为相同尺度;通过patch‑net处理模块获取相应的局部特征增强;通过注意力多实例学习模块来增强全局特征;通过分类器得到分类结果;最后通过训练多尺度多注意力实例学习模型。本发明是采取了区域块的分析方法,能获取对大脑病变影响更大的位置,引入了双注意机制,能增强到局部和全局的特征;本发明采用了将分割数据和脑区数据结合的多模态数据,加强分类效果。
-
公开(公告)号:CN119854340A
公开(公告)日:2025-04-18
申请号:CN202510315997.8
申请日:2025-03-18
Applicant: 杭州电子科技大学丽水研究院 , 丽水学院
IPC: H04L67/12 , H04L67/1042 , H04L67/1087 , H04L45/00 , H04L45/12 , G06Q10/047 , G06Q50/04 , G06F18/23 , G06F18/15 , G16Y10/25
Abstract: 本发明涉及物联网技术领域,具体为智能工厂制造中基于智能设备的网络关系分析方法及系统,方法包括:采集设备的交互、通信及协同数据,并进行清洗和标准化处理;将设备抽象为网络节点,构建网络图模型;计算节点的中心性指标,判别关键节点,并通过谱聚类算法识别节点集群,构建关键节点的群组结构;分析节点间的连接关系,利用加权最短路径算法计算关键节点与其他节点的最优连接路径,并根据计算结果调整网络中的节点连接。本发明方法可以有效分析智能工厂中设备的网络关系,优化设备间的连接,提高生产效率和系统鲁棒性。
-
公开(公告)号:CN118155290A
公开(公告)日:2024-06-07
申请号:CN202410442762.0
申请日:2024-04-12
Applicant: 杭州电子科技大学丽水研究院
IPC: G06V40/20 , G06V10/40 , G06V10/80 , G06V10/764 , G06V10/82
Abstract: 本发明公开了一种多模态深度感知的高精度集成动态手势识别方法。首先获取动态手势数据集,应用2D和3D数据增强方法增加样本数量;然后将增强后的数据进行灰度变换,并分别输入3D‑CNN子网络、ConvLSTM子网络和TCN子网络分别提取手势序列特征;将手势序列特征直接或融合输入相应分类器;最后将分类器结果集成,输出最终的概率分布。本发明额外对数据进行了数据增强和灰度变换,在数据原有的多模态之外,增加了灰度2D和灰度3D模态,使得本方法能识别分辨率更低的输入图像;并且本发明使用了一种优化加权集成,能够更有效地优化的综合多模态的分类结果。
-
公开(公告)号:CN116310695A
公开(公告)日:2023-06-23
申请号:CN202310393116.5
申请日:2023-04-13
Applicant: 杭州电子科技大学丽水研究院
IPC: G06V10/80 , G06V10/82 , G06V20/40 , G06N3/0442 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于门控融合网络的视频显著性预测方法,首先构建门控融合网络;通过编码器提取视频片段包含的时空特征,用桥接模块增强顶层编码特征,再使用门控融合模块融合编解码特征,最后对门控融合特征进行解码处理,预测最终的显著图。本发明提出了一个门控融合模块用于将编码器的多级特征有效地融入到解码器中。该模块沿着时间、空间和通道维度加权编码特征,从而更加精准地定位显著对象的位置,并过滤掉特征中冗余的时空信息。
-
公开(公告)号:CN116306828A
公开(公告)日:2023-06-23
申请号:CN202310210826.X
申请日:2023-03-07
Applicant: 杭州电子科技大学丽水研究院
Abstract: 本发明公开了一种基于图同构神经网络的脑网络链接预测方法,首先对于脑网络数据进行处理,完成脑结构网络建模;再构建基于图同构神经网络的脑网络链接预测模型,包括子图提取模块和图同构神经网络模块;之后进行脑网络链接预测模型的训练和测试;最后通过训练完成的脑网络链接预测模型完成脑网络链接预测。本发明在实现较为高的准确率的基础上降低了时间成本,极大的提升了模型对于子图结构的学习能力,对于接下来的链接预测有十分重要的意义。
-
公开(公告)号:CN120011368A
公开(公告)日:2025-05-16
申请号:CN202510140396.8
申请日:2025-02-08
Applicant: 杭州电子科技大学丽水研究院 , 上上德盛集团股份有限公司 , 浙江阿季云智能科技有限公司
Abstract: 本发明涉及知识图谱技术领域,公开了一种基于知识图谱的语义关联和逻辑规则的推理方法,该方法包括:获取跨职能部门的第一数据集,构建跨部门知识图谱;从跨部门知识图谱中提取指标节点,识别语义冲突指标,生成指标语义冲突列表,基于指标语义冲突列表,构建语义映射后的跨部门知识图谱;获取跨职能部门的第二数据集,基于第二数据集和语义映射后的跨部门知识图谱,得到融合后的跨部门知识图谱和语义关联度矩阵;依据语义关联度矩阵,动态调整融合后的跨部门知识图谱的各节点和边的权重,生成跨部门协同知识图谱;基于跨部门协同知识图谱生成跨部门协同决策建议;本发明显著提升了跨部门协同决策的效率和质量。
-
公开(公告)号:CN116797785A
公开(公告)日:2023-09-22
申请号:CN202310327951.9
申请日:2023-03-30
Applicant: 杭州电子科技大学丽水研究院
IPC: G06V10/26 , G06V10/44 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464
Abstract: 本发明公开了一种基于特征提炼的伪装物体检测方法,首先获取伪装物体检测数据集,进行数据预处理;构建基于特征提炼的伪装物体检测模型;再通过训练集对构建好的基于特征提炼的伪装物体检测模型训练,对预测结果使用结构损失函数进行监督学习。最后对模型训练结果加以验证。本发明基于特征提炼的方式来构建伪装物体检测模型,对伪装物体图像的特征进行增强处理以及去除背景噪声,利用结构损失函数对结果进行监督学习,使得预测结果更加准确,具有较强的鲁棒性,从而实现对伪装物体的精确分割,对社会具有重要意义。
-
-
-
-
-
-
-
-
-