-
公开(公告)号:CN116797785A
公开(公告)日:2023-09-22
申请号:CN202310327951.9
申请日:2023-03-30
Applicant: 杭州电子科技大学丽水研究院
IPC: G06V10/26 , G06V10/44 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464
Abstract: 本发明公开了一种基于特征提炼的伪装物体检测方法,首先获取伪装物体检测数据集,进行数据预处理;构建基于特征提炼的伪装物体检测模型;再通过训练集对构建好的基于特征提炼的伪装物体检测模型训练,对预测结果使用结构损失函数进行监督学习。最后对模型训练结果加以验证。本发明基于特征提炼的方式来构建伪装物体检测模型,对伪装物体图像的特征进行增强处理以及去除背景噪声,利用结构损失函数对结果进行监督学习,使得预测结果更加准确,具有较强的鲁棒性,从而实现对伪装物体的精确分割,对社会具有重要意义。