-
公开(公告)号:CN118865392A
公开(公告)日:2024-10-29
申请号:CN202411339837.9
申请日:2024-09-25
Applicant: 杭州电子科技大学丽水研究院
Abstract: 本发明公开了基于强化学习的场景布局估计方法,涉及场景布局估计技术领域,包括如下步骤:将场景的稠密点云映射到平面上,利用形态学侵蚀进行分割,并进行合并处理,得到房间点云;再将房间点云投影到二维平面上,提取房间点云中的边缘点云,并进行分割处理,得到独立区域的壁面点云;然后基于Q‑learning算法,确定强化学习中的状态、动作和奖励;再基于独立区域的壁面点云采用Q‑learning算法拟合线段,得到独立区域的壁面线段数据;最后基于独立区域的壁面线段数据,生成场景布局模型;本发明用于解决现有技术中无法在消除了独立区域之间的干扰和遮挡物的影响的同时减少计算量,场景布局估计效率和准确性较低的问题。
-
公开(公告)号:CN119722515A
公开(公告)日:2025-03-28
申请号:CN202411781153.4
申请日:2024-12-05
Applicant: 杭州电子科技大学丽水研究院
IPC: G06T5/73 , G06T5/60 , G06N3/0455 , G06N3/0464 , G06N3/0475 , G06N3/088 , G06N3/094
Abstract: 本发明公开了一种基于深度学习的无监督图像去摩尔纹方法,首先准备无需配对的摩尔纹图像及清晰图像;构建图像去摩尔纹的无监督网络模型,模型基于生成对抗网络架构,并结合了对比学习方法,包括生成器、判别器和内容编码器。然后对构建的图像去摩尔纹网络模型进行无监督训练。本发明创新的提出了从非配对的数据集中也能学习到从摩尔纹图像到清晰图像的映射关系,避免了收集真实世界的配对图像的繁琐工作。实验表明,本发明能在非配对的数据集上实现很好的去摩尔纹效果。
-