一种基于深度学习的结直肠息肉图像分割方法

    公开(公告)号:CN114972364B

    公开(公告)日:2025-04-25

    申请号:CN202210550464.4

    申请日:2022-05-18

    Abstract: 本发明公开了一种基于深度学习的结直肠息肉图像分割方法。首先获取结直肠息肉分割数据集;进行数据预处理;再构建基于深度学习的结直肠息肉图像分割模型;通过训练集对构建好的基于深度学习的结直肠息肉图像分割模型训练,对每一级预测结果使用结构损失函数进行监督学习,并且将最后一级的预测结果作为最终的预测结果;本发明基于深度学习来构建结直肠息肉图像分割模型,对结直肠息肉分割图像的特征进行精确提取并且细节保留完整,利用显著性目标检测中效果较好的结构损失函数对结果进行监督学习,使得预测结果更加准确,具有较强的鲁棒性,从而实现对结直肠息肉图像的精确分割。

    一种基于注意力生成对抗网络的绘画图像和谐方法

    公开(公告)号:CN119107381A

    公开(公告)日:2024-12-10

    申请号:CN202411264579.2

    申请日:2024-09-10

    Abstract: 本发明公开了一种基于注意力生成对抗网络的绘画图像和谐方法,首先建立网络训练需要的图像数据集;构建基于注意力生成对抗网络的绘画图像和谐模型,使用包括风格转换器的生成器将合成图像和实例分割蒙版作为输入输出和谐绘画图像;其次,提出一个像素级特征鉴别器来引导生成器产生更加真实协调的绘画图像;采用训练数据对模型进行训练;最后经过训练的模型接收需要进行图像和谐的图片,完成和谐处理后将图片输出。本发明通过自适应地计算模式可重复性来转移局部和全局纹理解决了现有方法中注意力模块反复滥用风格图像中的特定局部补丁,导致不和谐和明显重复伪像的现象,能够生成用不同背景风格模式清晰地表达艺术风格的和谐图像。

    一种基于多层局部模式的多视角目标地理定位方法

    公开(公告)号:CN117974778A

    公开(公告)日:2024-05-03

    申请号:CN202311833777.1

    申请日:2023-12-28

    Abstract: 本发明公开了一种基于多层局部模式的多视角目标地理定位方法。首先进行理论建模;然后构建多层本地模式交叉注意网络,网络基于双分支的架构,每个分支由主干、交叉注意力块、分区池化块以及多层聚合块组成;再对多层本地模式交叉注意网络进行训练;通过训练好的多层本地模式交叉注意网络实现多视角目标地理定位。现有的方法通常侧重于从最终的特征映射中提取细粒度信息,而忽略了中间层输出的重要性。在本发明中,首先提取不同层的特征映射,并且使用交叉注意块来建立不同层的特征映射信息之间的相关性,改进了浅层特征的语义表达。本发明提出了多层聚合块对通过分割得到的高关联特征块进行聚合。

    一种基于多任务的眼底图像检测方法

    公开(公告)号:CN113516678B

    公开(公告)日:2024-04-05

    申请号:CN202110348257.6

    申请日:2021-03-31

    Abstract: 本发明公开了一种基于多任务的眼底图像检测方法。采用DRIVE眼底公开数据集,将数据集分为训练集和测试集,并对数据进行有疾病和没有疾病的人工标记操作;对训练集和测试集进行数据增强操作;将数据增强后的训练集输入到多任务UNet网络中训练网络参数,得到眼底图像识别模型;通过经过数据增强的测试集进行测试,根据识别结果对模型进行微调。本发明方法更加具有普适性,本发明采用的对图像进行多任务计算并且在下采样添加额外操作对眼底疾病进行二分类任务,此外在跳跃链接中添加通道注意力机制使得网络对于通道信息更加敏感,保证图像分割质量。

    一种基于限制性预测滤波的图像散景渲染方法及系统

    公开(公告)号:CN113538338B

    公开(公告)日:2024-04-02

    申请号:CN202110672308.0

    申请日:2021-06-17

    Abstract: 本发明公开了一种基于限制性预测滤波的图像散景渲染方法及系统,首先准备数据集并对数据进行预处理;构建基于限制性预测滤波的图像散景渲染网络;图像散景渲染网络包括限制性预测滤波模块和显著性检测模块,其中显著性检测模块用于检测输入全聚焦图片中的显著性特征,限制性预测滤波模块用于保留显著性检测模块检测到的显著性特征,并对输入图片的其他部分进行限制性滤波操作,模糊图片内容从而产生散景渲染效果;通过数据集训练图像散景渲染网络模型。本发明方法使用三种参数类型的限制性预测滤波核对图片进行自适应滤波,从而实现散景渲染处理,创新的提出了一种限制性预测滤波模块用于实现图像的散景渲染处理。

    一种基于像素分布估计的单张图像超分辨重建系统及方法

    公开(公告)号:CN113538231B

    公开(公告)日:2024-04-02

    申请号:CN202110672302.3

    申请日:2021-06-17

    Abstract: 本发明公开了一种基于像素分布估计的单张图像超分辨重建系统及方法,首先进行数据预处理获得高分辨率图片IHR和低分辨率图片ILR;然后构建并训练基于像素分布估计的图像超分辨重建网络,包括权重提取模块和像素分布估计模块;权重提取模块用于从输入的低分辨率图片ILR中计算出像素分布估计模块所需要的权重,而像素分布估计模块根据预先设定的倍数s对输入图片像素的邻域像素相对坐标进行像素估计,实现图像的超分辨重建过程。本发明方法从像素分布估计的角度解释并实现了图像超分辨重建,模型结构简单,权重学习模块结构用卷积层就可以很好的学习,运算成本低,且效果好。

Patent Agency Ranking