一种基于多时间尺度图嵌入的动态脑网络学习方法

    公开(公告)号:CN117973460A

    公开(公告)日:2024-05-03

    申请号:CN202311793067.0

    申请日:2023-12-25

    Abstract: 本发明公开了一种基于多时间尺度图嵌入的动态脑网络学习方法,包括以下步骤:步骤1,通过滑动窗口法将血氧水平依赖(BOLD)信号按照不同的时间尺度进行划分,利用皮尔森相关系数计算不同时间尺度下对应的动态脑功能连接网络;步骤2,构建求动态拉普拉斯矩阵和动态图嵌入的目标函数;步骤3,确定步骤2中目标函数的优化方法;步骤4,将步骤1中的动态脑功能连接网络作为步骤2的输入,执行步骤3中的优化方法得到动态脑网络和图嵌入。该方法结合BOLD信号和图嵌入,利用图学习技术得到具有高动态性和高信噪比的动态脑网络,能更准确地反映出脑网络的动态变化,为相关疾病的诊断和治疗提供帮助。

Patent Agency Ranking