-
公开(公告)号:US12219358B2
公开(公告)日:2025-02-04
申请号:US17448041
申请日:2021-09-17
Applicant: Microsoft Technology Licensing, LLC
Inventor: Stefan Saroiu , Paramvir Bahl
IPC: H04W12/122 , G06F21/53 , H04L41/0806 , H04L47/22 , H04W12/03 , H04W84/04
Abstract: Resistance to vulnerabilities from timing-based side-channel attacks on 5G network slices that share underlying physical infrastructure and resources may be enhanced by selectively imposing time-based constraints on service provisioning and data handling to obscure data-driven time variations that occur during workload execution in a slice that can leak secret information. By preventing timing leakage from the 5G network slices, an attacker cannot observe execution latencies to thereby infer the constituency of workload characteristics. In addition, the attacker cannot create contention for shared resources on its own slice to observe an extent to which the shared resources are utilized by a targeted slice.
-
2.
公开(公告)号:US20250030627A1
公开(公告)日:2025-01-23
申请号:US18907686
申请日:2024-10-07
Applicant: Hewlett Packard Enterprise Development LP
Inventor: David Charles Hewson , Partha Kundu
IPC: H04L45/28 , G06F9/50 , G06F9/54 , G06F12/0862 , G06F12/1036 , G06F12/1045 , G06F13/14 , G06F13/16 , G06F13/28 , G06F13/38 , G06F13/40 , G06F13/42 , G06F15/173 , H04L1/00 , H04L43/0876 , H04L43/10 , H04L45/00 , H04L45/02 , H04L45/021 , H04L45/028 , H04L45/12 , H04L45/122 , H04L45/125 , H04L45/16 , H04L45/24 , H04L45/42 , H04L45/745 , H04L45/7453 , H04L47/10 , H04L47/11 , H04L47/12 , H04L47/122 , H04L47/20 , H04L47/22 , H04L47/24 , H04L47/2441 , H04L47/2466 , H04L47/2483 , H04L47/30 , H04L47/32 , H04L47/34 , H04L47/52 , H04L47/62 , H04L47/625 , H04L47/6275 , H04L47/629 , H04L47/76 , H04L47/762 , H04L47/78 , H04L47/80 , H04L49/00 , H04L49/101 , H04L49/15 , H04L49/90 , H04L49/9005 , H04L49/9047 , H04L67/1097 , H04L69/22 , H04L69/28 , H04L69/40
Abstract: A network interface controller (NIC) capable of efficient load balancing among the hardware engines is provided. The NIC can be equipped with a plurality of ordering control units (OCUs), a queue, a selection logic block, and an allocation logic block. The selection logic block can determine, from the plurality of OCUs, an OCU for a command from the queue, which can store one or more commands. The allocation logic block can then determine a selection setting for the OCU, select an egress queue for the command based on the selection setting, and send the command to the egress queue.
-
公开(公告)号:US12177130B2
公开(公告)日:2024-12-24
申请号:US18224466
申请日:2023-07-20
Applicant: VMware LLC
Inventor: Navaneeth Krishnan Ramaswamy , Ganesh Srinivasan
IPC: H04L47/36 , H04L43/026 , H04L45/00 , H04L47/22
Abstract: Some embodiments provide a method for performing deep packet inspection (DPI) for an SD-WAN (software defined, wide area network) established for an entity by a plurality of edge nodes and a set of one or more cloud gateways. At a particular edge node, the method uses local and remote deep packet inspectors to perform DPI for a packet flow. Specifically, the method initially uses the local deep packet inspector to perform a first DPI operation on a set of packets of a first packet flow to generate a set of DPI parameters for the first packet flow. The method then forwards a copy of the set of packets to the remote deep packet inspector to perform a second DPI operation to generate a second set of DPI parameters. In some embodiments, the remote deep packet inspector is accessible by a controller cluster that configures the edge nodes and the gateways. In some such embodiments, the method forwards the copy of the set of packets to the controller cluster, which then uses the remote deep packet inspector to perform the remote DPI operation. The method receives the result of the second DPI operation, and when the generated first and second DPI parameters are different, generates a record regarding the difference.
-
公开(公告)号:US12113713B2
公开(公告)日:2024-10-08
申请号:US18206813
申请日:2023-06-07
Inventor: Yeonho Yoo , Gyeongsik Yang , Changyong Shin , Jeunghwan Lee , Hyuck Yoo
CPC classification number: H04L47/225 , H04L41/16 , H04L41/40 , H04L43/20 , H04L47/11
Abstract: Disclosed is a network hypervisor apparatus for providing a software defined networking (SDN)-based virtual network, the network hypervisor apparatus including a data collector configured to collect control traffic data and network topology information for each virtual switch; a control traffic predictor configured to predict future control traffic based on the control traffic data and the network topology information; and a translator configured to translate a control message corresponding to a virtual switch based on a prediction result.
-
公开(公告)号:US20240323746A1
公开(公告)日:2024-09-26
申请号:US18578805
申请日:2021-10-12
Applicant: Nippon Telegraph and Telephone Corporation
Inventor: Kenji Miyamoto , Yoshihito SAKAI , Tatsuya SHIMADA , Keita Takahashi
CPC classification number: H04W28/0236 , H04L47/225
Abstract: A communication system including one or more base stations that accommodates wireless terminals, one or more transfer apparatuses that transfer uplink communication of the wireless terminal received via the base station to an upper side, and a transfer apparatus controller that controls the one or more transfer apparatuses includes an information acquisition unit that acquires information on wireless communication between the base station and the wireless terminal for each traffic flow, a rate determination unit that determines a shaping rate of the traffic shaping for each traffic flow, so that delay jitter in the base station is mitigated on an upper side with respect to the base station, on the basis of the information on the wireless communication for each traffic flow, and a communication control unit that executes traffic shaping on the upper side with respect to the base station on the basis of the shaping rate determined by the rate determination unit.
-
公开(公告)号:US20240323113A1
公开(公告)日:2024-09-26
申请号:US18677994
申请日:2024-05-30
Applicant: Hewlett Packard Enterprise Development LP
Inventor: Jonathan P. Beecroft , Abdulla M. Bataineh , Thomas L. Court
IPC: H04L45/28 , G06F9/50 , G06F9/54 , G06F12/0862 , G06F12/1036 , G06F12/1045 , G06F13/14 , G06F13/16 , G06F13/28 , G06F13/38 , G06F13/40 , G06F13/42 , G06F15/173 , H04L1/00 , H04L43/0876 , H04L43/10 , H04L45/00 , H04L45/02 , H04L45/021 , H04L45/028 , H04L45/12 , H04L45/122 , H04L45/125 , H04L45/16 , H04L45/24 , H04L45/42 , H04L45/745 , H04L45/7453 , H04L47/10 , H04L47/11 , H04L47/12 , H04L47/122 , H04L47/20 , H04L47/22 , H04L47/24 , H04L47/2441 , H04L47/2466 , H04L47/2483 , H04L47/30 , H04L47/32 , H04L47/34 , H04L47/52 , H04L47/62 , H04L47/625 , H04L47/6275 , H04L47/629 , H04L47/76 , H04L47/762 , H04L47/78 , H04L47/80 , H04L49/00 , H04L49/101 , H04L49/15 , H04L49/90 , H04L49/9005 , H04L49/9047 , H04L67/1097 , H04L69/22 , H04L69/28 , H04L69/40
CPC classification number: H04L45/28 , G06F9/505 , G06F9/546 , G06F12/0862 , G06F12/1036 , G06F12/1063 , G06F13/14 , G06F13/16 , G06F13/1642 , G06F13/1673 , G06F13/1689 , G06F13/28 , G06F13/385 , G06F13/4022 , G06F13/4068 , G06F13/4221 , G06F15/17331 , H04L1/0083 , H04L43/0876 , H04L43/10 , H04L45/02 , H04L45/021 , H04L45/028 , H04L45/122 , H04L45/123 , H04L45/125 , H04L45/16 , H04L45/20 , H04L45/22 , H04L45/24 , H04L45/38 , H04L45/42 , H04L45/46 , H04L45/566 , H04L45/70 , H04L45/745 , H04L45/7453 , H04L47/11 , H04L47/12 , H04L47/122 , H04L47/18 , H04L47/20 , H04L47/22 , H04L47/24 , H04L47/2441 , H04L47/2466 , H04L47/2483 , H04L47/30 , H04L47/32 , H04L47/323 , H04L47/34 , H04L47/39 , H04L47/52 , H04L47/621 , H04L47/6235 , H04L47/626 , H04L47/6275 , H04L47/629 , H04L47/76 , H04L47/762 , H04L47/781 , H04L47/80 , H04L49/101 , H04L49/15 , H04L49/30 , H04L49/3009 , H04L49/3018 , H04L49/3027 , H04L49/90 , H04L49/9005 , H04L49/9021 , H04L49/9036 , H04L49/9047 , H04L67/1097 , H04L69/22 , H04L69/40 , G06F2212/50 , G06F2213/0026 , G06F2213/3808 , H04L69/28
Abstract: Data-driven intelligent networking systems and methods are provided. The system can accommodate dynamic traffic with fast, effective flow control of individual applications and traffic flows in conjunction with an end host. The system can maintain state information of individual packet flows, which can be set up or released dynamically based on injected data. Each flow can be provided with a flow-specific input queue upon arriving at a switch. Packets of a respective flow can be acknowledged after reaching the egress point of the network, and the acknowledgement packets can be sent back to the ingress point of the flow along the same data path. As a result, an ingress edge switch can perform fine grain flow control of individual sources of the flows residing on an end host.
-
公开(公告)号:US20240259287A1
公开(公告)日:2024-08-01
申请号:US18103568
申请日:2023-01-31
Applicant: THALES DIS CPL USA, INC.
Inventor: Wayne REED , Ranga ANUMULAPALLY , Marc André BOILLOT
IPC: H04L43/0888 , H04L43/062 , H04L47/22 , H04L47/62
CPC classification number: H04L43/0888 , H04L43/062 , H04L47/22 , H04L47/621
Abstract: Provided is a method for a Hardware Security Module (HSM) appliance to provide cryptographic services to multiple clients via cryptographic service requests and responses transmitted over a secure communication channel there between. The method comprises the steps of providing a traffic control feature for communications over said secure communication channel by way of a Linux Kernel, and leveling cryptographic service and balancing a workload of cryptographic transactions on the HSM appliance for the multiple clients submitting said requests and receiving said responses by way of a Traffic Control Agent (TCA), thereby distributing a fair, proportional share of resources on the HSM appliance needed for servicing the cryptographic services to multiple clients irrespective of thread count per client. Other embodiments disclosed, including a dynamic intelligent TCA.
-
公开(公告)号:US20240250898A1
公开(公告)日:2024-07-25
申请号:US18626452
申请日:2024-04-04
Applicant: Hewlett Packard Enterprise Development LP
Inventor: Jonathan P. Beecroft , Anthony Michael Ford
IPC: H04L45/28 , G06F9/50 , G06F9/54 , G06F12/0862 , G06F12/1036 , G06F12/1045 , G06F13/14 , G06F13/16 , G06F13/28 , G06F13/38 , G06F13/40 , G06F13/42 , G06F15/173 , H04L1/00 , H04L43/0876 , H04L43/10 , H04L45/00 , H04L45/02 , H04L45/021 , H04L45/028 , H04L45/12 , H04L45/122 , H04L45/125 , H04L45/16 , H04L45/24 , H04L45/42 , H04L45/745 , H04L45/7453 , H04L47/10 , H04L47/11 , H04L47/12 , H04L47/122 , H04L47/20 , H04L47/22 , H04L47/24 , H04L47/2441 , H04L47/2466 , H04L47/2483 , H04L47/30 , H04L47/32 , H04L47/34 , H04L47/52 , H04L47/62 , H04L47/625 , H04L47/6275 , H04L47/629 , H04L47/76 , H04L47/762 , H04L47/78 , H04L47/80 , H04L49/00 , H04L49/101 , H04L49/15 , H04L49/90 , H04L49/9005 , H04L49/9047 , H04L67/1097 , H04L69/22 , H04L69/28 , H04L69/40
CPC classification number: H04L45/28 , G06F9/505 , G06F9/546 , G06F12/0862 , G06F12/1036 , G06F12/1063 , G06F13/14 , G06F13/16 , G06F13/1642 , G06F13/1673 , G06F13/1689 , G06F13/28 , G06F13/385 , G06F13/4022 , G06F13/4068 , G06F13/4221 , G06F15/17331 , H04L1/0083 , H04L43/0876 , H04L43/10 , H04L45/02 , H04L45/021 , H04L45/028 , H04L45/122 , H04L45/123 , H04L45/125 , H04L45/16 , H04L45/20 , H04L45/22 , H04L45/24 , H04L45/38 , H04L45/42 , H04L45/46 , H04L45/566 , H04L45/70 , H04L45/745 , H04L45/7453 , H04L47/11 , H04L47/12 , H04L47/122 , H04L47/18 , H04L47/20 , H04L47/22 , H04L47/24 , H04L47/2441 , H04L47/2466 , H04L47/2483 , H04L47/30 , H04L47/32 , H04L47/323 , H04L47/34 , H04L47/39 , H04L47/52 , H04L47/621 , H04L47/6235 , H04L47/626 , H04L47/6275 , H04L47/629 , H04L47/76 , H04L47/762 , H04L47/781 , H04L47/80 , H04L49/101 , H04L49/15 , H04L49/30 , H04L49/3009 , H04L49/3018 , H04L49/3027 , H04L49/90 , H04L49/9005 , H04L49/9021 , H04L49/9036 , H04L49/9047 , H04L67/1097 , H04L69/22 , H04L69/40 , G06F2212/50 , G06F2213/0026 , G06F2213/3808 , H04L69/28
Abstract: Methods and systems are provided for performing lossy dropping and ECN marking in a flow-based network. The system can maintain state information of individual packet flows, which can be set up or released dynamically based on injected data. Each flow can be provided with a flow-specific input queue upon arriving at a switch. Packets of a respective flow are acknowledged after reaching the egress point of the network, and the acknowledgement packets are sent back to the ingress point of the flow along the same data path. As a result, each switch can obtain state information of each flow and perform per-flow packet dropping and ECN marking.
-
9.
公开(公告)号:US20240236012A1
公开(公告)日:2024-07-11
申请号:US18289034
申请日:2021-12-10
Applicant: MITSUBISHI ELECTRIC CORPORATION
Inventor: Christophe MANGIN
IPC: H04L47/56 , H04L47/22 , H04L47/28 , H04L47/62 , H04L47/6275 , H04L47/6295
CPC classification number: H04L47/564 , H04L47/22 , H04L47/28 , H04L47/621 , H04L47/623 , H04L47/6275 , H04L47/6295
Abstract: The present invention relates to a method implemented in a packet-switched network for scheduling transmission of Ethernet frames, comprising the steps of:
a) determining a priority level of each Ethernet frame to transmit, based on identification of data given in said Ethernet frame and related to a stream to which said Ethernet frame belongs,
b) determining, among the frames having the highest priority level, a frame, candidate for transmission, having a closest next time at which said candidate frame is to be transmitted, and
c) estimating an end-of-transmission time of said candidate, and checking whether a frame having a higher priority than the candidate does not have a next transmission time occurring before the end-of-transmission time of the candidate, and eventually transmitting the candidate.-
公开(公告)号:US20240236005A1
公开(公告)日:2024-07-11
申请号:US18525978
申请日:2023-12-01
Applicant: Nokia Solutions and Networks OY
Inventor: Bogdan USCUMLIC , Andrea ENRICI
CPC classification number: H04L47/22 , H04L41/145
Abstract: In some examples, an apparatus for protocol independent deterministic transport of data in a time-sensitive network comprises a processor, a memory coupled to the processor, the memory configured to store program code executable by the processor, the program code comprising one or more instructions, whereby to cause the apparatus to receive synchronisation data from the network, the synchronisation data comprising a measure for a clock frequency supporting transport of deterministic data traffic over the network,
receive multiple input packets, the input packets comprising deterministic data traffic and non-deterministic data traffic, and generate, from the multiple input packets and using the synchronisation data, a set of isochronous output packets comprising respective payloads and headers.
-
-
-
-
-
-
-
-
-