Abstract:
A boiler system is provided comprising: a furnace adapted to receive a fuel to be burned to generate hot working gases; a fuel supply structure associated with the furnace for supplying fuel to the furnace; a superheater section associated with the furnace and positioned to receive energy in the form of heat from the hot working gases; and a controller. The superheater section may comprise a platen including a tube structure with an end portion and a temperature sensor for measuring the temperature of the tube structure end portion and generating a signal indicative of the temperature of the tube structure end portion. The controller may be coupled to the temperature sensor for receiving and monitoring the signal from the sensor.
Abstract:
A method generates superheated steam using heat generated in a boiler of an incineration plant. The pre-superheated steam is fed to a final superheater that includes a plurality of final superheater pipes through which the pre-superheated steam is guided and is finally superheated in the process. The final superheater pipes (are arranged at least partially in at least one cavity (formed in an interior of a wall element of the boiler and/or of a bulkhead arranged in the boiler. The cavity is closed off on a boiler side at least partially by a refractory material layer and is flowed over by flue gas released during combustion. A secondary medium flows through the cavity and is heated via heat transfer from the flue gas via the refractory material layer. The heated secondary medium is fed via a secondary medium feed line to a secondary heat exchanger.
Abstract:
The disclosure provides an arrangement structure suitable for an inverted pulverized coal boiler with ultra-high steam temperature steam parameters, including a hearth, wherein the hearth is communicated with a middle uplink flue, and the top of the middle uplink flue is communicated with that of a tail downlink flue. In the structure, the hearth is connected with the middle uplink flue by a hearth outlet horizontal flue at the bottom, so that the high-temperature gas is drained to a low elevation and then flows upwards through the middle uplink flue; a final heating surface may be arranged at the low position of the hearth outlet horizontal flue and the middle uplink flue so as to reduce the length of the high-temperature steam pipeline between the final heating surface and the steam turbine, lower the manufacturing cost of the boiler as well as the frication and radiation loss of the pipe.
Abstract:
A combined gas and steam turbine plant includes a coal gasification system having a heat exchanger device and preferably a gas scrubber connected downstream of the heat exchanger device. A gas turbine part is connected downstream of the coal gasification system and has an exhaust gas turbine. A steam generator system receives exhaust gas from the exhaust gas turbine and has an economizer heating surface, an evaporator heating surface, and superheater heating surfaces. A steam turbine part is connected to the steam generator system and has a high-pressure feedwater system. The heat exchanger device of the coal gasification system is connected in such a way that it directly transfers or gives up thermal energy for feedwater heating or steam generation to the high-pressure feedwater system of the steam turbine part.
Abstract:
A ground supported single drum power boiler is described combining a refractory lined and insulated V-Cell floor; refractory lined and insulated combustion chamber; integrated fuel chutes configured to pre-dry wet solid fuel; top mounted fuel bin; internal chamber walls; configurable combustion air systems; and a back pass with after-burner ports and cross flow superheaters. The boiler can be configured in pre-assembled modules to minimize the field construction time and cost. An alternative embodiment is adaptable as a gasifier.
Abstract:
A ground supported single drum power boiler is described combining a refractory lined and insulated V-Cell floor; refractory lined and insulated combustion chamber; integrated fuel chutes configured to pre-dry wet solid fuel; top mounted fuel bin; internal chamber walls; configurable combustion air systems; and a back pass with after-burner ports and cross flow superheaters. The boiler can be configured in pre-assembled modules to minimize the field construction time and cost. An alternative embodiment is adaptable as a gasifier.
Abstract:
A boiler system is provided comprising: a furnace adapted to receive a fuel to be burned to generate hot working gases; a fuel supply structure associated with the furnace for supplying fuel to the furnace; a superheater section associated with the furnace and positioned to receive energy in the form of heat from the hot working gases; and a controller. The superheater section may comprise a platen including a tube structure with an end portion and a temperature sensor for measuring the temperature of the tube structure end portion and generating a signal indicative of the temperature of the tube structure end portion. The controller may be coupled to the temperature sensor for receiving and monitoring the signal from the sensor.