Abstract:
An oxidative treatment process, e.g., oxidative desulfurization or denitrification, is provided in which the oxidant is produced in-situ using an aromatic-rich portion of the original liquid hydrocarbon feedstock. The process reduces or replaces the need for the separate introduction of liquid oxidants such as hydrogen peroxide, organic peroxide and organic hydroperoxide in an oxidative treatment process.
Abstract:
This invention is directed to novel mixed transition metal iron (II/III) catalysts for the extraction of oxygen from CO2 and the selective reaction with organic compounds.
Abstract:
This invention is directed to novel mixed transition metal iron (II/III) catalysts for the extraction of oxygen from CO2 and the selective reaction with organic compounds.
Abstract:
A filter device purifies fluids, especially fuels contaminated with organic substances. Hydroxyl radicals are formed from water molecules contained in the fluids by a separating device (10, 14, 22). The hydroxyl radicals oxidize the impurities, especially organic substances, as much as possible and convert them into compounds such as CO2.
Abstract:
The invention is directed to a process for producing carbon nanofibers and/or carbon nanotubes, which process comprises pyrolysing a particulate cellulosic and/or carbohydrate substrate that has been impregnated with a compound of an element or elements, the metal or alloy, respectively, of which is capable of forming carbides, in a substantially oxygen free, volatile silicon compound containing atmosphere, optionally in the presence of a carbon compound.
Abstract:
Trace element levels of heavy metals in crude oil are reduced by contacting the crude oil with an oxidizing agent, extracting heavy metals into a water phase for subsequent separation from the crude oil. The oxidizing agent is selected from the group of hydroperoxides, organic peroxides, inorganic peracids and salts thereof, organic peracids and salts thereof, and ozone. In one embodiment, the oxidizing agent converts heavy metals into the heavy metal cations in a water-oil emulsion, which can be subsequently separated from the crude oil, for a treated crude oil having reduced levels of heavy metals. In one embodiment, at least a complexing agent can be added to facilitate the removal by forming soluble heavy metal complexes in the water phase.
Abstract:
A process is disclosed for the production of olefins including ethylene, propylene and butenes from methyl mercaptan. The process comprises a reaction whereby methyl mercaptan decomposes to produce the olefin and hydrogen sulfide. The reaction is carried out at an elevated temperature in the range of 300° C. to 500° C. to achieve pyrolysis. Alternatively, a heterogeneous catalyst may be used.
Abstract:
A process to reduce acidity of hydrocarbon mixtures (1) is described, that includes sending a hydrocarbon stream to a Microwave Treatment Unit (MTU), with a fixed stream or mud bed of microwave absorbent materials, pure or in mixtures, such as coke fines, spent catalysts that have already been used in FCC units or hydrotreatment (HDT) in a refinery, or even new catalysts which may be sulfided or not, under processing conditions.
Abstract:
Processes and systems associated with hydrodynamic cavitation-catalyzed oxidation of sulfur-containing substances in a fluid are described. In one example method, cavitation bubbles are produced in a mixture of a carbonaceous fluid and one or more oxidants by hydrodynamic cavitation. Collapse of the cavitation bubbles may catalyze or partially catalyze oxidation of the sulfur-containing substances. The sulfur-containing substances may be removed from the mixture based, at least in part, on their oxidized state. An example system includes a device configured to mix a carbonaceous fluid and one or more oxidants, at least one cavitation chamber configured to produce cavitation bubbles in the mixture, and at least one elevated pressure zone configured to collapse the cavitation bubbles, thereby catalyzing oxidation of the sulfur-containing substances.
Abstract:
A partial oxidation process for the production of a stream of cooled and cleaned synthesis gas, reducing gas, or fuel gas substantially free from entrained particulate matter and slag. The hot raw gas stream from the partial oxidation gas generator is quench cooled with deaerated grey water in a quench tank to produce black quench water or cooled in a radiant and/or convection cooler. The cooled gas is scrubbed with deaerated grey water in a scrubbing zone to remove all of the entrained particulate matter and to produce black scrubbing waters. The black water is resolved in a flashing zone and reused by flashing it in two or three flash stages connected in series and separating the overhead flash vapors comprising vaporized grey water and sour gas from the bottoms comprising concentrated black water. The flash vapors from the first flash stage are used to heat a stream of deaerated grey water being recycled to the quench tank and gas scrubbing zone or to the gas scrubbing zone. The concentrated black water from the flashing zone is thickened in a clarifier and then filtered to produce filter cake which may be burned and grey water filtrate. The flash vapors from the second flash stage and optionally steam are introduced into a deaerator to strip dissolved oxygen from incoming make-up water, grey water condensate, and grey water filtrate. In another embodiment of the process, the flash zone comprises three flash stages.