Abstract:
A multi-stage reactor system for preparing biodiesel is used to increase efficiency and yield and reduce impurities. A three-stage transesterification reaction for preparing biodiesel can include one high-shear cavitation reactor and two low-shear cavitation reactors, preferably in series, and optionally one or more separation vessels for removing waste and recycling triglyceride feedstock, catalyst and alcohol to the high-shear cavitation reactor.
Abstract:
A process for increasing ethanol yield from grain comprising mixing grain, water and enzyme to for a grain-based liquid medium. The grain-based liquid medium is passed through a cavitation device at a velocity and pressure capable of generating a cavitation activation energy of at least 0.4 kJ per kilogram of grain-based liquid medium to enhance the activity of the enzyme and increase ethanol yield.
Abstract:
A device and process for crystallizing a compound using hydrodynamic cavitation comprising the steps of mixing at least one stream of a feed solution of such compound to be crystallized with at least one stream of an anti-solvent in a nucleating section via collision of the feed solution and the anti-solvent, passing the mixed streams at an elevated pressure through at least one local constriction of flow to create hydrodynamic cavitation thereby causing nucleation and the production of seed crystals, passing the fluid stream containing the seed crystals through an intermediate section to a crystal growth section, passing the fluid stream containing the seed crystals through the crystal growth section at an elevated pressure through at least one local constriction of flow to create hydrodynamic cavitation thereby causing further crystallization of the compound contained in the solution.
Abstract:
A process for preparing biodiesel having improved filterability characteristics including inducing transesterification of a triglyceride feedstock with cavitation to form an intermediate reaction product. Glycerol by product is separated from the intermediate reaction product before finishing the transesterification reaction in a pressurized reaction tank to yield a biodiesel reaction product. The biodiesel reaction product can be further purified by removing glycerol.
Abstract:
Methods and devices for mixing fluids are described. One exemplary method includes producing hollow cylinders of fluid, flowing the cylinders toward one another along the surface of a cylinder, and colliding the cylinders head-on to produce a radial outflow of fluid and cavitation bubbles.
Abstract:
A device and method for generating micro bubbles in a liquid. The method comprises the steps of: providing a flow-through channel containing at least two local constrictions of flow therein; passing the liquid at a velocity of at least at least 12 m/sec through a first local constriction of flow to create a first hydrodynamic cavitation field downstream from the first local constriction of flow; introducing a gas into the liquid in the first local constriction of flow, thereby creating gas-filled cavitation bubbles; collapsing the gas-filled cavitation bubbles formed in the first hydrodynamic cavitation field to dissolve the gas into the liquid, thereby forming a gas-saturated liquid; passing the gas-saturated liquid through a second local constriction of flow to create a second hydrodynamic cavitation field downstream from the second local constriction of flow; and extracting the dissolved gas from the gas-saturated liquid, thereby generating micro bubbles in the liquid.
Abstract:
Devices for mixing and/or reacting combinations of one or more liquids, gases or solids is provided. The device can generally have at least one cavity into which a fluid flows by way of a tangential orifice, thereby forming cavitation bubbles. The cavity is configured to alternate between a closed position, where pressure increases in the fluid and the cavitation bubbles collapse, and an open position, where the fluid exits the cavity. Also provided are methods for mixing and/or reacting fluids. Also provided are mixture and reaction products made using the methods.
Abstract:
A system and method for heat treating a homogenized fluid product, the method comprising the steps of feeding a stream of fluid product ingredients through a local constriction of flow to effectuate high shear mixing of the fluid product ingredients in a high shear mixing zone downstream from the local constriction of flow and thereby form a homogenized fluid product at a first temperature and introducing a sufficient amount of the homogenized fluid product at a second temperature, which is less than the first temperature, into the high shear mixing zone to effectuate mixing of the homogenized fluid product at the first temperature with the homogenized fluid product at the second temperature to thereby heat treat the homogenized fluid product fluid product.
Abstract:
Devices for mixing and/or reacting combinations of one or more liquids, gases or solids is provided. The device can generally have at least one cavity into which a fluid flows by way of a tangential orifice, thereby forming cavitation bubbles. The cavity is configured to alternate between a closed position, where pressure increases in the fluid and the cavitation bubbles collapse, and an open position, where the fluid exits the cavity. Also provided are methods for mixing and/or reacting fluids. Also provided are mixture and reaction products made using the methods.
Abstract:
Processes and devices associated with reducing the amount of organic substances in a fluid are described. In one example method, oxidizing agents may be introduced into a local constriction of flow in a flow-through chamber as the fluid is flowed therethrough. Cavitation bubbles which contain and/or are associated with the oxidizing agents may form. Collapse of the cavitation bubbles may produce pulses of ultraviolet light, thereby ionizing the oxidizing agents, producing hydroxyl radicals, and degrading and/or oxidizing the organic substances in the fluid. An example device may include a flow-through chamber including a local constriction of flow, a port configured to introduce oxidizing agents into the local constriction of flow, and may include an area configured to collapse the cavitation bubbles, thereby initiating events leading to degradation and/or oxidation of organic substances in a fluid flowed through the device.