Receptor and method for removing oxoanions from aqueous phase

    公开(公告)号:US12077455B2

    公开(公告)日:2024-09-03

    申请号:US17436780

    申请日:2020-03-06

    Abstract: A receptor for the simultaneous removal of oxoanions and their counterions from aqueous phase, particularly containing radioactive wastes, containing amide groups specifically coordinating the oxoanions, as well as moieties specifically coordinating cations, according to the present invention is characterised in that it contains within one molecule domains binding oxoanions and domains binding cations, preferably adapting a molecular structure of a general formula: (I) wherein Z this is a group containing crown ether, preferably a benzocrown group, X is any substituent, including the Y—Z grouping, and Y is any substituent or 0 (i.e. a direct bond between N and Z), where the oxoanion binding domain is a squaramide unit coordinating the oxoanions through amide groups, and squaramide contains additional substituents that increase or decrease the acidity of its amide protons, compared to unsubstituted squaramide, whereas the counter ion binding domain is a crown ether of a size adjusted to the type of binding cation, which forms part of at least one of the aforementioned substituents of squaramide, where the receptor has the ability to remove oxoanions and their counterions from aqueous phase to another water-immiscible phase, preferably to organic phase, and has the ability to form soluble complexes in at least one of the aforementioned phases. The invention considers also a method of removing oxoanions in the form of inorganic salts from aqueous phase, using receptors of the invention in the form of organic molecules containing amide groups, according to the invention is characterised in that it uses the aforementioned receptors for simultaneous binding of oxoanions and their counterions in aqueous phase, preferably acidic when using the receptor with substituents increasing acidity of squaramide protons, or alkaline when using the receptor with substituents decreasing acidity of squaramide protons. A sensor for detecting oxoanions according to the invention is characterised in that it uses the aforementioned receptors, dissolved or suspended in an organic solvent or in a mixture of organic solvents, forming coloured complexes in contact with the phase containing given oxoanions. The preparation for removing oxoanions from aqueous solutions, particularly containing radioactive waste at the stage preceding their disposal by vitrification, is characterised in that it contains the receptor according to the invention, dissolved or suspended in the water-immiscible phase, and the appropriate amount of counterion facilitating extraction. A process of utilisation of aqueous solutions by vitrification, particularly solutions containing radioactive waste, is characterised in that vitrification step is preceded by the step of oxoanions removal, preferably sulfate(VI) anions, by the method according to the invention, using the receptors according to the invention, preferably using the preparation according to the invention.

    PURIFICATION OF AQUEOUS SOLUTIONS FROM METAL CONTAMINATION WITH ACTIVATED MANGANESE DIOXIDE

    公开(公告)号:US20180319689A1

    公开(公告)日:2018-11-08

    申请号:US15980763

    申请日:2018-05-16

    Inventor: Stanley M. MEYER

    Abstract: The present disclosure relates, according to some embodiments, to systems and methods for removal of contaminants from water including, but not limited to, industrial wastewater, brackish water, municipal wastewater, drinking waters, and particularly waters obtained from fracking operations. For example, a method for purifying a feed water composition may comprise (a) contacting the feed water composition with an activated manganese dioxide to form an activated manganese dioxide-containing feed water composition, where the activated manganese dioxide was formed by contacting soluble organics with soluble permanganate ions (MnO4−) at a pH from about 5.5 to about 14; (b) increasing the pH of the activated manganese dioxide-containing feed water composition sufficient to form a contaminant precipitate and an alkaline solution, wherein the contaminant precipitate comprises at least some of the metal; (d) removing the contaminant precipitate from the alkaline solution to form a treated water, wherein the treated water is purified relative to the feed water composition. The activated manganese dioxide material may be formed in situ by adding the soluble permanganate ions to the feed water composition where the permanganate will react with the contained proper organic or a proper organic added to the feed water composition, such as glycerin. In the alternative, the activated manganese dioxide can be formed in vitro by reacting the soluble permanganate ions with the proper organic, and the resulting activated manganese dioxide can thereafter be added to the feed water composition. Optionally, the pH of treated water can be lowered, for example to a pH suitable for transportation or for further industrial use, such as liquid road salt. In addition, either or both the feed water composition and the treated water can be exposed to activated carbon. Further yet, the treated water can be exposed to ultraviolet (UV) light. The treated water is then suitable for industrial purpose, such as liquid road salt.

Patent Agency Ranking