Abstract:
The invention includes a gas processing system for transforming a hydrocarbon-containing inflow gas into outflow gas products, where the system includes a gas delivery subsystem, a plasma reaction chamber, and a microwave subsystem, with the gas delivery subsystem in fluid communication with the plasma reaction chamber, so that the gas delivery subsystem directs the hydrocarbon-containing inflow gas into the plasma reaction chamber, and the microwave subsystem directs microwave energy into the plasma reaction chamber to energize the hydrocarbon-containing inflow gas, thereby forming a plasma in the plasma reaction chamber, which plasma effects the transformation of a hydrocarbon in the hydrocarbon-containing inflow gas into the outflow gas products, which comprise acetylene and hydrogen. The invention also includes methods for the use of this gas processing system.
Abstract:
A pyrolysis reactor (12) and method for the pyrolysis of hydrocarbon gases (e.g., methane) utilizes a pyrolysis reactor (12) having a unique burner assembly (44) and pyrolysis feed assembly (56) that creates an inwardly spiraling fluid flow pattern of the feed gases to form a swirling gas mixture that passes through a burner conduit (46) with a constricted neck portion or nozzle (52). At least a portion of the swirling gas mixture forms a thin, annular mixed gas flow layer immediately adjacent to the burner conduit (46). A portion of the swirling gas mixture is combusted as the swirling gas mixture passes through the burner conduit (46) and a portion of combustion products circulates in the burner assembly (44). This provides conditions suitable for pyrolysis of hydrocarbons or light alkane gas, such as methane or natural gas.
Abstract:
The invention includes a gas processing system for transforming a hydrocarbon-containing inflow gas into outflow gas products, where the system includes a gas delivery subsystem, a plasma reaction chamber, and a microwave subsystem, with the gas delivery subsystem in fluid communication with the plasma reaction chamber, so that the gas delivery subsystem directs the hydrocarbon-containing inflow gas into the plasma reaction chamber, and the microwave subsystem directs microwave energy into the plasma reaction chamber to energize the hydrocarbon-containing inflow gas, thereby forming a plasma in the plasma reaction chamber, which plasma effects the transformation of a hydrocarbon in the hydrocarbon-containing inflow gas into the outflow gas products, which comprise acetylene and hydrogen. The invention also includes methods for the use of this gas processing system.
Abstract:
Equipment for producing ethylene and/or acetylene from hydrocarbons, including the reaction chamber (13), burner (11), common or separate fuel gas inlets (12) and oxygen inlets (18), preheating tubes (14), a gas distributor (15), cracking gas inlets (16), and a reaction product outlet (17); the gas distributor (15), which has multiple gas inlets and gas outlets, is arranged on the cross section of the reaction chamber (13), where the gas inlet is connected to the cracking gas inlet (16), and the gas outlet is connected to the preheating tube (14). The cracking gas is uniformly distributed through the gas distributor (15) and passed through the preheating tubes (14), which are hollow tubes; the opening at the other end of the hollow tube is close to or inserted into the combustion area of the gaseous fuel and oxygen.
Abstract:
Disclosed herein are processes, apparatuses, and systems for producing chemicals. One system may comprise a wall defining a chamber; a plurality of burners configured in an arrangement within the chamber, wherein each of the burners is supplied with a material and facilitates combustion of the material, and wherein the arrangement defines an inner volume disposed radially inwardly relative thereto; and an injector disposed within the inner volume and configured to introduce a feedstock into the chamber, wherein the plurality of burners provide thermal energy to facilitate thermal pyrolysis of the feedstock.
Abstract:
The invention relates to textile fibers at least partially covered with a nanometric-sized semiconducting material having photocatalytic properties for degrading chemical compounds, in particular chemical or biological agents, wherein said semiconducting material is in the form of nanostructure or nanocomposites with a one-dimensional morphology. The textile fibers can be used for application in the military, medical, and civilian domains, etc. The curves 60 and 62 respectively show the photocatalytic degradation of organic compounds at the surface of textile fibers covered with nanostructures or nanocomposites having a one-dimensional morphology according to the invention, and nanoparticles having a granular morphology according to the prior art. The nanostructures are nanocomposites of the invention 60 are more efficient.
Abstract:
The invention relates to processes for converting hydrocarbons to phthalic acids such as terephthalic acid. The invention also relates to polymerizing phthalic acid derivatives to produce, e.g., synthetic fibers.
Abstract:
The invention relates to a process for the production of acetylene and synthesis gas by partial oxidation of hydrocarbons with oxygen, wherein the gaseous reactants are separately preheated, intimately mixed in a mixing zone, reacted after passing a burner block and rapidly quenched with an aqueous quench medium after reaction, further characterized in that the aqueous quench medium is recirculated in a closed system. Preferably the ratio of the gaseous reactants is selected in such a way that acetylene and soot produced in the reaction are obtained in a weight ratio of 50 to 500.
Abstract:
The invention relates to a process and to an apparatus for the conversion of hydrocarbons. According to the invention, at least one first gas containing at least 20% of oxygen by volume and a type of hydrocarbon are first all circulated in separate streams which are parallel to each other, without their being mixed, according to a spatial distribution such that the first gas is surrounded by the hydrocarbon; these substances are introduced into a mixing/reaction chamber at a first given circulation level, and while the substances are then allowed to mix, the oxygen and the hydrocarbon are ignited so as to give rise to the conversion reaction and then, at a second given circulation level situated downstream of the first, a quenching of the resultant mixture is performed in a chamber, the resultant quenched conversion products are recovered. The invention applies particularly to the manufacture of conversion products such as acetylene and ethylene.
Abstract:
A method for producing hydrocarbons having two carbon atoms, which comprises introducing methane gas into a reactor downwardly from the top, the reactor comprising a pair of reactor walls extending vertically and facing each other, one of the walls being maintained at a high temperature and the other being maintained at a low temperature, so that the methane gas is dimerized primarily through the dehydrogenation on the surface of the high temperature wall to form C.sub.2 hydrocarbons and hydrogen, and the C.sub.2 hydrocarbons are preferentially diffused and transferred to the low temperature wall side by thermal diffusion effects.