Abstract:
The invention relates to a novel drug delivery technology. More particularly the invention relates to a method of delivering at least one therapeutic compound or a formulation comprising the at least one therapeutic compound to a patient; to a throwaway or reusable device for delivering at least one therapeutic compound or a formulation comprising the at least one therapeutic compound to a patient in a manner as set out by the method; to a pioneer projectile for use in said method; to formulations for use in said method and to an injectate comprising a pioneer projectile and formulation. It also relates to a disposable component containing either a pioneer projectile or an injectate. The invention also relates to a throwaway or reusable device for delivering at least one therapeutic compound, or a formulation comprising the at least one therapeutic compound (hereafter drug) to a patient, and a method for administering a drug to a patient using said device. It also relates to a packaged drug for use with said device.
Abstract:
An apparatus is provided for applying to a surface of mammalian tissue including soft, living tissue an initially fluent material and then activating the material by exposure to an energy source. The material may be a liquid capable of polymerization to a non-fluent state by exposure to actinic light. The device, and methods that may be practised in association with the device, enable a wide range of medical conditions to be treated including, for example, the application of a barrier to soft tissue to prevent post-surgical adhesions.
Abstract:
The present invention concerns an antibiotic/antibiotics preparation for resorbable and non-resorbable implants for human and veterinary medicine, for the treatment of local microbial infections in hard and soft tissue. The invented antibiotic/antibiotics preparation is a mixture consisting of at least one amphiphilic component of a representative of the alkyl sulfates, aryl sulfates, alkylaryl sulfates, cycloalkyl sulfates, alkylcycloalkyl sulfates, alkyl sulfamates, cycloalkyl sulfamates, alkylcycloalkyl sulfamates, aryl sulfamates, alkylaryl sulfamates, alkyl sulfonates, fatty acid-2-sulfonates, aryl sulfonates, alkylaryl sulfonates, cycloalkyl sulfonates, alkylcycloalkyl sulfonates, alkyl disulfates, cycloalkyl disulfates, alkyl disulfonates, cycloalkyl disulfonates, aryl disulfonates, alkylaryl disulfonates, aryl trisulfonates and alkylaryl trisulfonates as well as at least one antibiotic component from the group of aminoglycoside antibiotics, lincosamide antibiotics, 4-quinolone antibiotics and tetracycline antibiotics, and if need be at least one anhydrous organic auxiliary component and if need be at least one inorganic auxiliary component and if need be at least one biologically active component. The antibiotic/antibiotics preparation of the invention has a retarding active ingredient release.
Abstract:
A biocompatible tissue repair stimulating implant or “scaffold” device, and methods for making and using such a device, are provided. The implant includes one or more layers of a bioabsorbable polymeric foam having pores with an open cell pore structure. A reinforcement component is also present within the implant to contribute enhanced mechanical and handling properties. The implant houses a biological component that may be released to tissue adjacent the location in which the implant is implanted to faciliate and/or expedite the healing of tissue. This biological component resides primarily within the foam component of the implant, being incorporated within pores formed within the foam.
Abstract:
The invention relates to a preparation for restenosis prevention. The preparations for restenosis prevention known as yet do not reach sufficient active agent concentrations in the affected sections of the vascular walls as higher doses cause undesirable side effects. The present invention is a preparation to which at least one antihyperplastic agent is added that has a distribution ratio between butanol and water ≧0.5. The lipophilic active agent is absorbed by the vascular wall fast and in sufficient quantity. The preparation may be a liquid that can pass through capillaries and may contain a contrast agent so that the active agent is transferred into the vascular wall without any additional effort while the usually required contrast radiograms are taken. The preparation may also be applied to a catheter.
Abstract:
Compositions for tissue engineering and drug delivery have been developed based on solutions of two or more polymers which form semi-interpenetrating or interpenetrating polymer networks upon exposure to active species following injection at a site in a patient in need thereof. The polymers crosslink to themselves but not to each other; semi-interpenetrating networks are formed when only one of the polymers crosslink. The resulting viscous solutions retain the biologically active molecules or cells at the site of injection until release or tissue formation, respectfully, occurs.As a result of studies conducted with polymer-cell suspensions forming interpenetrating polymer networks, it has been determined that polymer solutions can be formulated wherein the active species is provided by exposure of the polymer solution to an exogenous source of active species, typically electromagnetic radiation, preferably light. Studies demonstrate that light will penetrate through skin, body fluids (such as synovial fluid) and membranes and polymerize the polymer solutions. The polymer solutions can be crosslinked ionically or covalently, to form a hydrogel, semi-interpenetrating polymer network or an interpenetrating polymer network.
Abstract:
Methods, systems, and uses of bucky paper are provided in the present invention. These embodiments include covering medical implants with single or multiple layers of bucky paper, treating bucky paper with various therapeutics to be released through the bucky paper to a target site, shaping bucky paper into non-conventional configurations for improved therapeutic deliver, and using bucky paper alone or in conjunction with other materials to treat a target site.
Abstract:
A prebiotic, composition comprising a probiotic and prebiotic, and method of delivering a probiotic, prebiotic or composition directly into the intestinal tract of a mammal are disclosed. The probiotic is any beneficial bacteria and the prebiotic is a substance beneficial to a probiotic. Most preferably, the prebiotic includes a mucopolysaccharide. The method preferably involves delivering the prebiotic, probiotic or composition via a delivery tube, such as an enteral feeding tube, directly to a position downstream of the stomach, most preferably to the jejunum.
Abstract:
A preserved vessel isolated from a human umbilical cord or placenta and lyophilized for use as an allograft which improves blood supply to human tissue without antigenicity.
Abstract:
A therapeutically effective compound is locally administered by associating the compound with a piece of orthopedic hardware that is implanted at an appropriate site within a body. The compound is adapted, such as through a sustained release device, to administer an effective dosage continuously over an extended period of time. The compound may be administered, for example, to a joint of a mammal by intraarticularly implanting a sustained release device to deliver the therapeutically effective compound within a synovial capsule of the joint, such that synovial fluid concentration of the compound is greater than plasma concentration of the compound. A wide range of orthopedic hardware, such as bone screws and staples, may be adapted to use in the systems described herein to provide treatment for a variety of medical conditions.