Abstract:
A drilling tool for producing drill holes includes a tip and a shaft arranged opposite the tip in a direction of a longitudinal axis of the drilling tool. The drilling tool has at least one geometrically defined cutting edge in the tip area, and has an expanded diameter trailing the tip in a longitudinal direction from the tip. The drilling tool has a first area with a first diameter that precedes the expanded diameter, and a second area with a second diameter, larger than the first diameter, that trails the expanded diameter. The drilling tool is distinguished in that the expanded diameter and/or the second area is/are embodied such that chips are produced in the area of the expanded diameter and/or in the second area when a workpiece is machined, chips consistent with those produced when a workpiece is machined with a geometrically undefined cutting edge.
Abstract:
A tool head for use with a modular shank tool includes at least two preforms. Each preform of the at least two preforms is made separately from the other preform of the at least two preforms from granular materials and then put together and jointly compressed and integrally bonded.
Abstract:
The rotating tool, in particular a drill, includes a fluted cutting shank made of a resistant material, in particular carbide, extending in an axial direction along a rotational axis. Connecting to the cutting shank in the axial direction is an intermediate shank made of a material of greater elasticity in comparison the resistant material, in particular of tool steel. The intermediate shank includes an insertable cutting insert that may be exchanged. The cutting shank is preferably a cutting shank recycled from a used solid carbide drill.
Abstract:
A handheld surgical device includes a gripping mechanism for gripping pins or wires with a range of different sizes. The gripping mechanism includes a plurality of gripping blocks, the plurality of gripping blocks interacting to form a variable size channel. A sliding compression control element applies a compressive force to each gripping block and thereby grip a wire or pin within a range of sizes in the center of a pin/wire receiving channel.
Abstract:
Provided is a replaceable machining head wherein: fractures on the tool attaching portion do not occur; the production cost is minimized; the tool life of the working tool will be lengthened; and the head body is free from a risk of falling off during replacement. In the replaceable machining head, a cutting edge section is formed on the front side of a head body; a tool attaching portion to which a working tool is to be attached, is formed on the rear end side of the cutting edge section; tool attaching faces are formed in the tool attaching portion; the surface of the head body 1 is coated with a coating film; and the number of droplets or macro particles having convex shapes with a size of 0.3 μm to 5.0 μm, is 200 or less, per area of 40 μm×60 μm on the surface of the coating film over the tool attaching faces.
Abstract:
The present invention relates to a method for coating a substrate, preferably a drill, wherein at least one first HiPIMS layer is applied by means of a HiPIMS process. Preferably, at least one second layer is applied to the first HiPIMS layer by means of a coating process that does not contain a HiPIMS process.
Abstract:
The invention relates to hard-metal body comprising a hard-metal, the hard-metal comprising tungsten carbide grains and metal binder comprising cobalt having a concentration of tungsten dissolved therein, the body comprising a surface region adjacent a surface and a core region remote from the surface, the surface region and the core region being contiguous with each other; the mean binder fraction of the core region being greater than that of the surface region; the mean carbon concentration within the binder being higher in the surface region than in the core region; to tools comprising same and methods of making same.
Abstract:
A drill includes a drill bit, an intermediate part, and a shaft. The drill bit is made from a sintered carbon-containing hard metal. The intermediate part is made from steel and arranged along an axis between the drill bit and the shaft. An activity of carbon in the steel of the intermediate part is greater at a temperature ranging from 1100° C. to 1450° C. than an activity of carbon in the sintered hard metal at the temperature.
Abstract:
An elongated drill bit has a shank at one end and working end at the other. A flute portion is between the working end and the shank. The flute portion is continuous with the shank and working end and is generally unitarily formed with them. The flute portion has at least one flute with a helix angle between approximately 30° and 35°. The working end has a pilot tip with a cutting portion. A tapered web is formed in the flute portion, a thickness of the web at the tip of the working end is about 9% to 15% of the nominal diameter.
Abstract:
A bevel head replaceable rotary tool is provided. The rotary tool includes a coupling protrusion and a coupling recess, plural sets of serrations provided on an outer circumferential surface of the coupling protrusion and an inner wall surface of the coupling recess, circumferential abutting portions provided on the tool body and the bevel head, and axial tight-contact portions, provided on the tool body and the bevel head. The serrations of the coupling protrusion and the serrations of the coupling recess arranged such that curvatures of circumferential circular arcs of the serrations of the coupling protrusion are greater than those of the serrations of the coupling recess or the serrations of the coupling protrusion and the serrations of the coupling recess have circumferential circular arcs with centers deviated from each other.