Abstract:
A position controlling device for a carpenter angle drill/hollow chisel mortiser has a mounting group, a positioning group, and a retaining arm. The mounting group has two crossbars and a bridge bar. The bridge bar is connected to the crossbars. The positioning group is connected to the mounting group, and has two limiting blocks, a holding frame, and a circuit breaker. The limiting blocks are connected to the bridge bar between the crossbars. The holding frame is securely connected to one of the limiting blocks. The circuit breaker is mounted in the holding frame and has a contacting slice and an electric wire. The contacting slice is elastically connected to the circuit breaker, and transversally extends out of the holding frame. The retaining arm selectively abuts the contacting slice of the circuit breaker to enable the circuit breaker at a turn-off condition.
Abstract:
The present disclosure provides exemplary collapsible drills and associated methods of use. Thus, in one aspect, the disclosure provides a collapsible drill including or comprising a chuck, a piston and a motor section. The chuck can be configured and dimensioned to receive a drill bit. The piston can include a pair of interlocking splines. The motor section drives rotation of the piston and the chuck. Depression of the piston can stop rotation of the chuck relative to the piston. In another aspect, the disclosure provides methods of drilling into a material that include providing a collapsible drill, driving rotation of the piston and the chuck with the motor section, and depressing the piston to stop rotation of the chuck relative to the piston.
Abstract:
A drilling work control method includes: automatically discriminating two or more working object layers where load torque applied to a drill forms a hole in a workpiece having plural forming areas formed of materials of different qualities; facilitating drilling work in a working condition set for each working object layer; and improving working efficiency. In a drilling work device that forms the hole in the workpiece having forming layers divided by materials of different qualities, a working object layer determining means determines the layers in order of drilling work based on start of drilling work and variation in load torque applied to the drill, a working condition deciding means decides a set working spindle speed and working feeding speed corresponding to forming materials of the respective layers, and a drive controlling means controls a spindle motor and feeding motor so that the drill forms the hole at the set speeds.
Abstract:
A countersinking-carrier nozzle has a flat front surface with a central hole via which emerges a countersinking drill, such that said flat front surface establishes a limit to the penetration depth of the countersinking nozzle. The nozzle includes a flexible retainer for the nozzle front surface so that it swivels when making contact with a curved countersinking surface, adapting itself tangentially to it while the headstock presses against the countersinking surface. The flexible retainer is defined by a ball-and-socket joint including a curvo-concave retaining receptacle, with the possibility of swivelling, with a complementary curvo-convex portion provided in the rear part of the flat front surface. This portion projects with respect to the receptacle to allow it to swivel when pressed against the countersinking surface, at which moment the complementary curvo-convex portion of the rear part of the front surface swivels in the receptacle of the headstock.
Abstract:
A countersinking-carrier nozzle has a flat front surface with a central hole via which emerges a countersinking drill, such that said flat front surface establishes a limit to the penetration depth of the countersinking nozzle. The nozzle includes a flexible retainer for the nozzle front surface so that it swivels when making contact with a curved countersinking surface, adapting itself tangentially to it while the headstock presses against the countersinking surface. The flexible retainer is defined by a ball-and-socket joint including a curvo-concave retaining receptacle, with the possibility of swivelling, with a complementary curvo-convex portion provided in the rear part of the flat front surface. This portion projects with respect to the receptacle to allow it to swivel when pressed against the countersinking surface, at which moment the complementary curvo-convex portion of the rear part of the front surface swivels in the receptacle of the headstock.
Abstract:
A pneumatic drilling machine is provided, comprising a pneumatic motor, a circuit for connecting the motor to a source of compressed air, a tool holder spindle, and a drive mechanism. The drive mechanism comprises a coupling shaft which can be moved to select a first mode of driving the spindle and a second method of driving the spindle. The mechanism has a driving cycle which comprises a stationary mode at the beginning and end of the cycle, and at least one phase for driving the spindle according to the first driving method, then a phase for driving the spindle according to the second driving method, then the stopping of the supply of air to the motor. A supply valve of the circuit is controlled pneumatically by the drive mechanism to interrupt the supply of compressed air to the motor at the end of the driving cycle.
Abstract:
A pneumatic drilling machine is provided, comprising a pneumatic motor, a circuit for connecting the motor to a source of compressed air, a tool holder spindle, and a drive mechanism. The drive mechanism comprises a coupling shaft which can be moved to select a first mode of driving the spindle and a second method of driving the spindle. The mechanism has a driving cycle which comprises a stationary mode at the beginning and end of the cycle, and at least one phase for driving the spindle according to the first driving method, then a phase for driving the spindle according to the second driving method, then the stopping of the supply of air to the motor. A supply valve of the circuit is controlled pneumatically by the drive mechanism to interrupt the supply of compressed air to the motor at the end of the driving cycle.
Abstract:
A hand tool apparatus uses a cutting tool with a first width and a tool axis to machine a hole in an object. The hole has a second width at least as large as the first width of the cutting tool. The tool axis passes through a predetermined point on a surface of the object. The apparatus includes an actuating assembly including a housing. The housing contains an axial feed mechanism configured for moving the cutting tool in an axial direction, a spindle motor configured for rotating the cutting tool about the tool axis, and a radial offset mechanism. The radial offset mechanism is configured for moving the axial feed mechanism in a radial direction such that the tool axis is offset from a principal axis. A motor is configured for rotating said axial feed mechanism and the cutting tool about the principal axis.
Abstract:
The invention relates to a method and equipment designed to drill countersunk holes on surfaces of unknown positions in which a presser fitted to the tool support is placed against the surface to be drilled, and can move axially in relation to the tool; the presser is used as a limit switch to control tool return.
Abstract:
A drill for drilling holes in masonry and comprising a depth stop mounted on the drill shank and formed as a resilient anti-vibration element.