Abstract:
In a digital transmitter, a digital RF signal generation unit executes digital modulation on I and Q signals to convert the I and Q signal into first and second digital RF signals , respectively, with a bit rate which is twice a carrier frequency. A retiming unit delays the first digital RF signal according to a clock signal with a frequency which is 4n times (n is an integer) the carrier frequency to output the delayed first digital RF signal and delays the phase of the second digital RF signal by 90 degrees with respect to an output of the first digital RF signal to output the delayed second digital RF signal. First and second amplifiers amplify the first and second digital RF signals output by the retiming unit, respectively. A combiner combines the amplified first and second digital RF signals to generate one signal sequence.
Abstract:
A phase and frequency control circuit may be provided. The phase and frequency control circuit may include a division circuit configured to generate a plurality of divided signals by dividing an input signal. The phase and frequency control circuit may include a timing control circuit configured to generate a plurality of timing control signals by sampling the plurality of divided signals according to a phase control code and a sampling reference signal.
Abstract:
A delay circuit includes a plurality of cascaded delay elements responsive to control signals. Each delay element is configurable to receive an input signal on a forward path and return the input signal on two return paths. A control unit is connected to the plurality of cascaded delay elements and configured to generate a first set of control signals for defining a first configuration of the plurality of cascaded delay elements, a second set of control signals for causing a delay element of the plurality of cascaded delay elements to change from a powered off status to a powered on status while configured in an initialization mode, and a third set of control signals for defining a second configuration of the plurality of cascaded delay elements.
Abstract:
A circuit for generating a plurality of oscillating signals with different phases includes a frequency divider, a first delay chain, a second delay chain and a calibration circuit. The frequency divider is arranged for frequency dividing a first input signal and a second input signal to generate a first frequency-divided input signal and a second frequency-divided input signal. The first delay chain is arranged for delaying the first frequency-divided input signal, and the second delay chain is arranged for delaying the second frequency-divided input signal. The calibration circuit is arranged for controlling delay amounts of the first delay chain and the second delay chain according to signals within the first delay chain or the second delay chain; wherein output signals of a portion delay cells within the first delay chain and the second delay chain serve as the plurality of oscillating signals with different phases.
Abstract:
The present invention provides a clock signal controller structure. The invention allows for the large-skew clock signals to be converted into small-skew clock signals. The technical solution of the present invention may be adopted to synchronize two large-skew clock signals.
Abstract:
The present invention provides a clock signal controller structure. The invention allows for the large-skew clock signals to be converted into small-skew clock signals. The technical solution of the present invention may be adopted to synchronize two large-skew clock signals.
Abstract:
A phase locked loop that generates an internal clock by controlling a delay time of a delay cell according to conditions of PVT, thereby improving a jitter characteristic of the internal clock. The delay cell includes a first current controller for controlling first and second currents in response to a control voltage, and a second current controller for controlling the first and second currents in response to frequency range selection signals. The phase locked loop includes a phase comparator for comparing a reference clock with a feedback clock, a control voltage generator for generating a control voltage corresponding to an output of the phase comparator, and a voltage controlled oscillator for generating an internal clock having a frequency in response to the control voltage and one or more frequency range control signals, wherein the feedback clock is generated using the internal clock.
Abstract:
Low voltage oscillators that provide a stable output frequency with varying supply voltage are provided. The subject oscillators find use in a variety of different types of devices, e.g., medical devices, including both implantable and ex-vivo devices.
Abstract:
A ring oscillator based voltage controlled oscillator (VCO) is disclosed. The VCO includes a set of delay cells connected to each other in a ring configuration. Each of the delay cells includes a source-coupled input transistor pair, a current-steering transistor pair and a pair of load resistors. The source-coupled input transistor pair receives a pair of differential voltage inputs. The load resistors, which are connected to the source-coupled input transistor pair, provide a pair of differential voltage outputs. The current-steering transistor pair, which is connected to the source-coupled input transistor pair, receives a pair of differential bias voltage inputs. The output frequency of the VCO is directly proportional to the differential bias voltages at the pair of differential bias voltage inputs.
Abstract:
Circuits, methods, and apparatus for delaying signals in a power and area efficient manner are provided. A gating element within a stage of a programmable delay element suppresses an operation of other stages of the delay element. A programmable delay has components with differing delays that may be combined to give flexibility in choices for delay increments while minimizing the area of the delay element. A delay element is shared between different signal paths, for example, to reduce the number of delay elements or to allow utilizing unused delay elements of other signal paths.