Abstract:
A compensation method for a characteristic difference of a photoelectric element is disclosed. The method includes (S1) providing a test substrate with a connector, a photoelectric element and a plurality of gain units, wherein the plurality of gain units are connected in parallel, and each gain unit includes a gain resistor and a disconnection port; (S2) connecting the connector to a test fixture which includes a test resistor and a test control unit, wherein when the test fixture is connected with the connector, the test resistor is electrically connected between the second pin and the third pin; (S3) providing input power to the connector so as to generate a test voltage on the photoelectric element; (S4) selecting the corresponding gain unit according to the test voltage and a classification data table; (S5) driving a production line to connect the first contact and the second contact of the selected gain unit.
Abstract:
A first low-noise amplifier is connected to a first receiving processing unit through a first cable and a bypass circuit is provided in parallel to the first low-noise amplifier so as to bypass the first low-noise amplifier. In the case that the intensity of broadcasting signal is more than a predetermined value, when the C/N is more than a first predetermined value and less than a second predetermined value higher than the first predetermined value, the broadcasting signal is transmitted to the first cable through the first low-noise amplifier, and when the C/N is less than the first predetermined value or more than the second predetermined value, the broadcasting signal is not input to the first low-noise amplifier but transmitted to the first cable through the bypass circuit.
Abstract:
A transmission power control apparatus which reduces the number of steps required for adjustments of the transmission power control apparatus and performs transmission power control with high accuracy in a wide dynamic range. The apparatus has a first variable amplifying circuit (122) with the resolution of 1 dB and a second variable amplifying circuit (123) with the resolution of 0.1 dB, where a correction value calculating section (106) calculates a correction value to compensate for deterioration in the accuracy of transmission power caused by a change in environment due to frequency characteristics and temperature characteristics and another correction value to compensate for error in transmission power, a transmission power calculating section (107) calculates transmission power obtained by correcting with the correction value specified transmission power to output to a communicating party based on the received signal, and a first set value calculating section (108) and a second set value calculating section (109) calculate gain values to set on the first variable amplifying circuit (122) and second variable amplifying circuit (123) based on the corrected transmission power, respectively.
Abstract:
Circuit arrangement for the switchable amplification of variable electrical signals having at least one signal input and a signal output. A switchable amplifier is present between signal input and signal output and is provided with an input, with an output and with a negative feedback path having at least one resistor between input and output. The circuit arrangement further comprises a voltage source, the polarity of which can be reversed by a switching element. In this case, the negative feedback path has a switchable bypass connected in parallel with the at least one resistor. The signals fed in at the amplifier input are furthermore to be fed to the amplifier output in amplified fashion via a first signal path or in unamplified fashion via a second signal path depending on the polarity of the voltage source.
Abstract:
An automatic gain control (AGC) circuit includes a number of attenuation circuits connected in series relative to a reception signal, a of variable gain amplifiers to which the reception signal and each output signal from the attenuation circuits are fed, respectively, a signal deriving circuit connected to output terminals of the variable gain amplifiers for deriving a level-controlled output signal, and a control current generating circuit for generating a control current having a predetermined characteristic out of first and second AGC voltages, wherein the control current outputted from the control current generating circuit is supplied to the variable gain amplifiers as a control signal for switching an operation thereof and for controlling a gain thereof, and a feedback control current corresponding to the control current is performed by the control current generating circuit.
Abstract:
Circuit arrangement for the switchable amplification of variable electrical signals having at least one signal input and a signal output. A switchable amplifier is present between signal input and signal output and is provided with an input, with an output and with a negative feedback path having at least one resistor between input and output. The circuit arrangement further comprises a voltage source, the polarity of which can be reversed by a switching element. In this case, the negative feedback path has a switchable bypass connected in parallel with the at least one resistor. The signals fed in at the amplifier input are furthermore to be fed to the amplifier output in amplified fashion via a first signal path or in unamplified fashion via a second signal path depending on the polarity of the voltage source.
Abstract:
A power amplifier circuit, including: an input node configured to receive a radio frequency (RF) signal; an output node configured to output an amplified RF signal; a main path switchably coupled between the input node and the output node, and including a first plurality of amplification stages to generate a first amplified RF signal; a bypass path switchably coupled between the input node and the output node, and including at least one second amplification stage to generate a second amplified RF signal; and a coupling switch configured to reuse at least a portion of the bypass path to drive the main path to generate a third amplified RF signal.
Abstract:
A transmission power control apparatus which reduces the number of steps required for adjustments of the transmission power control apparatus and performs transmission power control with high accuracy in a wide dynamic range. The apparatus has a first variable amplifying circuit (122) with the resolution of 1 dB and a second variable amplifying circuit (123) with the resolution of 0.1 dB, where a correction value calculating section (106) calculates a correction value to compensate for deterioration in the accuracy of transmission power caused by a change in environment due to frequency characteristics and temperature characteristics and another correction value to compensate for error in transmission power, a transmission power calculating section (107) calculates transmission power obtained by correcting with the correction value specified transmission power to output to a communicating party based on the received signal, and a first set value calculating section (108) and a second set value calculating section (109) calculate gain values to set on the first variable amplifying circuit (122) and second variable amplifying circuit (123) based on the corrected transmission power, respectively.
Abstract:
A first low-noise amplifier is connected to a first receiving processing unit through a first cable and a bypass circuit is provided in parallel to the first low-noise amplifier so as to bypass the first low-noise amplifier. In the case that the intensity of broadcasting signal is more than a predetermined value, when the C/N is more than a first predetermined value and less than a second predetermined value higher than the first predetermined value, the broadcasting signal is transmitted to the first cable through the first low-noise amplifier, and when the C/N is less than the first predetermined value or more than the second predetermined value, the broadcasting signal is not input to the first low-noise amplifier but transmitted to the first cable through the bypass circuit.
Abstract:
An amplification device including: a switch including an output that is suitable for being connected to a first or a second input; a first branch that is connected to the first input, which applies a first gain to generate a first amplified signal; a second branch that is connected to the second input, which applies a second gain to generate a second amplified signal; a controller for controlling the switching of the switch to apply the first or the second amplified signal to the output, depending on whether or not the value of a predetermined quantity of the first amplified signal falls within a predetermined range. The first gain and the second gain being non-zero real numbers of opposite sign.